Enhancement of photocatalytic NO\textsubscript{x} abatement on titania via additional metal oxide NO\textsubscript{x}-storage domains: Interplay between surface acidity, specific surface area, and humidity

Mustafa Çağlayana,1, Muhammad Irfana,c, Kerem Emre Erkana, Yusuf Kocaka, Emrah Ozensoya,b,*

a Chemistry Department, Bilkent University, 06800, Bilkent, Ankara, Turkey
b UNAM-National Nanotechnology Center, Bilkent University, 06800, Ankara, Turkey
c Nanoscience and Catalysis Department, National Centre for Physics, 44000, Islamabad, Pakistan

\textbf{ARTICLE INFO}

\textbf{Keywords:}
NO\textsubscript{x} abatement
Photocatalytic NO\textsubscript{x} oxidation-storage (PHONOS)
Titania
Calcium oxide
Alumina
DeNO\textsubscript{x} catalysts

\textbf{ABSTRACT}

In this work, we propose a simple and effective preparation procedure to obtain ternary mixed oxides composed of titania (TiO\textsubscript{2}, P25), alumina (γ-Al\textsubscript{2}O\textsubscript{3}) and calcium oxide (CaO) functioning as efficient photocatalytic NO\textsubscript{x} oxidation and storage (PHONOS) catalysts that are capable of facile NO\textsubscript{x} abatement under ambient conditions in the absence of elevated temperatures and pressures with UVA irradiation. In this architecture, titania was the photocatalytic active component and CaO and/or γ-Al\textsubscript{2}O\textsubscript{3} provided NO\textsubscript{x} storage domains revealing dissimilar specific surface areas (SSA) and surface acidities. We show that photocatalyst formulation can be readily fine-tuned to achieve superior photocatalytic performance surpassing conventional P25 benchmark in short (1 h) and long term (12 h), as well as humidity-dependent photocatalytic tests. We demonstrate the delicate interplay between the surface acidity, SSA and humidity and provide detailed mechanistic insights regarding the origin of photocatalytic activity, selectivity and deactivation pathways.

1. Introduction

Environmental pollution is one of the major challenges faced by the modern human societies. Anthropogenic air pollutants such as nitrogen oxides (NO\textsubscript{x}) not only induce ozone production in troposphere and cause acid rain, but also severely affect human respiratory and immune systems [1,2]. Environmental protection agencies have set a recommended value of ≤ 0.2 ppm for NO\textsubscript{x} emissions which is exceeded routinely in urban settings in Europe [3]; calling for an urgent need for more efficient and novel approaches for NO\textsubscript{x} abatement. In conventional DeNO\textsubscript{x} technologies associated with stationary (e.g. heating systems, power plants etc.) and mobile sources (marine, aerial, and land transportation/construction vehicles), NO\textsubscript{x} abatement is typically aimed to be accomplished at the source of the NO\textsubscript{x} generation using thermal catalytic technologies (i.e. selective catalytic reduction/SCR and NO\textsubscript{x} storage and reduction/NSR) at elevated temperatures [4–7]. As a result of the frequent violations of transportation-based NO\textsubscript{x} emission limits by numerous car manufacturers in Europe, on-board NO\textsubscript{x} emissions have been reported to be up to 16 times higher than those values measured in test stands [8]. It is estimated that such violations are causing annually ca. 5000 premature mortalities in Europe [8].

Therefore, an important challenge is the abatement of gaseous NO\textsubscript{x} species after their point of origin in urban settings under ambient conditions (i.e. at room temperature and at atmospheric pressure). In this regard, Photocatalytic Oxidative NO\textsubscript{x} Storage (PHONOS) is an attractive alternative [9–12]; which can exploit readily available solar radiation under ambient conditions and store airborne NO\textsubscript{x} in the solid state. This approach has been already implemented in advanced construction materials to combat urban NO\textsubscript{x} pollution [13,14], using mainly titanium dioxide (TiO\textsubscript{2}) based photocatalysts. TiO\textsubscript{2} is the most widely used semiconductor for the photocatalytic decomposition of gaseous and liquid phase pollutants as it is abundant, cost-efficient, chemically and thermally stable, hydrophilic, non-toxic, and is also capable of oxidizing organic/inorganic species [15]. However, it has been reported that complete photocatalytic reduction of toxic NO\textsubscript{x} species into harmless N\textsubscript{2} occurs only with an extremely limited extent on titania [16]. More importantly, in photocatalytic NO\textsubscript{x} abatement applications, TiO\textsubscript{2} has a low selectivity towards NO\textsubscript{x} storage in solid state and tends to oxidize NO (g) into a more toxic product, NO\textsubscript{2} (g),
which eventually slips into atmosphere [17]. Therefore, it is necessary to develop improved photocatalyst systems with high stability, efficiency and selectivity. Moreover, these prospective DeNOx materials should be abundant, accessible, easy to synthesize, stable, affordable and non-toxic in order to justify their implementation on a large scale.

In the current work, we focus on photocatalytic oxidation and storage of NOx in the solid state in the form of nitrates and nitrites on photocatalyst surfaces containing CaO, Al2O3, and TiO2 metal oxide mixtures. NO and NO2 are two of the most predominant toxic species in atmospheric NOx emissions. Electronic structures of NO and NO2 molecules reveal a radical nature exhibiting electron deficiency due to unpaired valence electrons. Thus, they can function in an amphiphilic manner as Lewis acids and/or Lewis bases. For instance, NO2 adsorbed on alkaline earth metal oxide surfaces can interact simultaneously with both Lewis basic sites such as O2− (surf) as well as Lewis acidic sites such as M2+ (surf) forming nitrite and nitrate pairs which can interact in a synergistic (cooperative) fashion forming extremely stable co-adsorbed nitrate and nitrite species [18]. On alkaline earth metal oxide surfaces, adsorbed nitrate and nitrite species can also be formed as a result of an electron transfer between two adsorbed NO2 species forming Lewis acidic NO2− (surf) and Lewis basic NO2+ (surf) species, with a high affinity toward O2− (surf) or M2+ (surf) sites, respectively [18–20]. It was confirmed experimentally in earlier studies [21] that nitrates are formed during the earlier stages of NO2 adsorption on alkaline earth metal oxide surfaces at room temperature; confirming the formation of nitrite-nitrate ion pairs [22]. Furthermore, via our former in-situ FTIR and temperature programmed desorption (TPD) studies [5–7,23–30], it has been demonstrated that during the NO2 adsorption on titania, alumina and alkaline earth oxides at room temperature, nitrates are gradually converted into nitrites upon extended NO2 exposure, yielding various types of surface nitrate species with moderate surface adsorption strength, as well as bulk-like nitrites with an extremely high adsorption strength on alkaline earth oxides.

Hence, relative surface acidity of a metal oxide surface is a critical factor governing the extent and strength of its interactions with gaseous NOx species. It is well known that both Lewis and Brønsted surface acidities of calcium oxide, titania and alumina are ranked in the following increasing order CaO < TiO2 (anatase) < δ-Al2O3 [31]. In other words, surface acidity of titania (i.e. the most commonly used photocatalyst in DeNOx applications) lies between the more basic CaO and the more acidic δ-Al2O3. Another crucial parameter influencing the NOx adsorption and storage capacity of a metal oxide surface is the specific surface area (SSA) of the corresponding metal oxide. The most commonly utilized conventional commercial titania benchmark catalyst is P25 with a typical SSA of ca. 50 m2/g, while SSA of typical γ-Al2O3 and CaO materials are ca. 200 m2/g and 3 m2/g, respectively (this work). Hence; CaO, Al2O3, and TiO2 mixed metal oxides reveal an interesting playground for investigating the effects of surface acidity and SSA on photocatalytic NOx oxidation and storage.

Furthermore; understanding the interplay between titania and CaO in photocatalytic DeNOx systems is quite important, since titania-based photocatalytic construction materials are also likely to contain natural Ca-based minerals such as CaO, Ca(OH)2 and CaCO3 (limestone) as additives. For instance, limestone content of typical cement binders can be as high as > 60 wt.% [32].

Interaction between titania and alumina in photocatalytic DeNOx systems is also worth investigating since, among different transitional alumina phases, γ-Al2O3 is the most widely used support material due to its superior chemical and thermal stability, high surface area and favorable surface acid/base properties [33]. In automotive emission control applications, γ-Al2O3 is frequently used as a DeNOx catalyst support material in three-way catalytic converter systems (TWC) and NSR systems. In NSR catalyst systems [6,7,23–26], although most of the NOx is stored on various basic metal oxides (e.g. BaO) supported on alumina, γ-Al2O3 can also contribute to the total NOx storage capacity of the catalytic systems by enabling the formation of surface nitrates and to a greater extent surface nitrates with different adsorption geometries (e.g. monodentate, bidentate or bridging nitrates) [34–38]. It is also very well known that nitrates formed upon NO2 adsorption on the relatively acidic γ-Al2O3 surface reveal a significantly weaker adsorption strength than that of the nitrates formed on basic alkaline earth oxides upon NO2 adsorption [6,7,23–26].

In former studies, we [5] as well as others (e.g. see the detailed discussion in Ref [39] about NOx adsorption on titania in the presence and absence of water investigated via in-situ FTIR spectroscopy) have spectroscopically demonstrated that both on TiO2 and on TiO2/MxOy binary oxide surfaces, oxidized NOx species such as NO2 (g) can readily undergo further disproportionation reactions forming various species such as adsorbed NO2− (nitrates), NO3− (nitrates), NO+4, HNO3, HNO2 etc. facilitating efficient NOx storage at the solid-state. However, NO (g) has a limited adsorption energy on many metal oxide surfaces compared to that of NO2, hindering the direct storage of NO in the solid (adsorbed) state. Thus, for solid state NOx storage, NO should be first oxidized to NO2 and then subsequently stored on the available adsorption sites of the catalyst surface in the form of nitrites/nitrates. Although oxidation of NO can be done readily at elevated temperatures using precious metals, it cannot be efficiently achieved under ambient conditions due to kinetic limitations. However, this limitation can be overcome by designing a catalytic system including a photocatalytic NO oxidation component (i.e. TiO2) which is coupled to NOx storage domains (i.e. CaO and Al2O3). Along these lines, in the current work, we show that CaO, Al2O3 and TiO2 containing mixed oxide surfaces can be exploited to perform efficient photocatalytic NOx oxidation and storage, where TiO2 surface domains provide the catalytic NO oxidation capability under ambient conditions, converting NO into NO2, nitrites and nitrates, while CaO and Al2O3 components provide additional surface adsorption sites for non-catalytic storage of oxidized NOx (Scheme 1). Note that rather than BaO, which is the most commonly used NOx storage component in NSR catalytic formulations, we preferred to use CaO in the current work due to the higher cost and toxicity of the former material.

It is clear that the photocatalytic NOx oxidation and storage (PHONOS) catalyst proposed in Scheme 1 is subject to eventual saturation and loss of activity due to the blocking of both catalytic (TiO2) and non-catalytic (CaO or Al2O3) surface adsorption sites with NOx oxidation products such as surface/bulk nitrites and nitrates [30,40]. This is also a frequently observed phenomenon in NSR catalysts, where the NOx storage domains comprised of basic metal oxides such as BaO are eventually saturated with nitrates and lose their NOx storage capacity. In such thermal catalytic systems, regeneration of the basic

![Scheme 1. Hybrid Photocatalytic NOx Oxidation and Storage (PHONOS) catalyst concept with enhanced NO2 capture and improved DeNOx selectivity.](image-url)
metal oxide domains is accomplished via reduction of nitrates to nitrogen using external reducing agents (e.g., CO, NH₃, hydrocarbons, and H₂ etc.) through the assistance of precious metal (e.g., Pd, Pt) catalytic active sites within 200–450 °C. On the other hand, in principle, saturated or deactivated DeNOₓ photocatalysts can be readily regenerated with the help of water (i.e., rain, in case of outdoor applications or wet cleaning for indoor applications) at room temperature, which would dissolve and wash-off the surface nitrates and nitrates leaving behind regenerated surface sites available for further catalytic action as well as non-catalytic adsorption (NOₓ storage). It should be noted that titania and alumina are not soluble metal oxides in ordinary aqueous systems (unless pH of the aqueous system is extremely low or extremely high, which would not be the case for the currently proposed water-based regeneration conditions). Thus, regeneration is not expected to deplete neither titania nor alumina contents of the photocatalyst formulation by dissolution. CaO can react with water to form Ca(OH)₂ which is also a sparingly soluble salt in water with a Kₛₚ of ca. 5.5 × 10⁻⁵ at 298 K. Although this may lead to some performance loss (as demonstrated in our current work), a macroscopic loss of CaO due to interaction of water is also not presumable. On the other hand, NOₓ species stored on CaO in the form of e.g., Ca(NO₃)₂ and Ca(NO₂)₂ are readily soluble in water and can be removed from the catalyst by washing with water. Considering the miniscule amount of surface Ca(NO₃)₂ and Ca(NO₂)₂ species that will be generated from ppb-level concentrations of atmospheric NOₓ (g), a significant (i.e., macroscopic) loss of Ca-based salts upon nitrogen regeneration with water is also not expected.

While this may be true, photocatalytic NO oxidation mechanisms also include adsorbed water molecules and surface hydroxyl/hydroxide functionalities as important players [41]. Therefore, in the current work, we also investigated the influence of adsorbed water (i.e., humidity) on the photocatalytic DeNOₓ efficiency of CaO, α-Al₂O₃, and TiO₂ metal oxide mixtures. Currently presented study reveals an extremely simple but an efficient methodology that can significantly enhance the photocatalytic NO abatement performance of commercial titania (P25) benchmark photocatalyst by providing detailed information on catalyst formulation and performance optimization, along with relevant mechanistic insight.

2. Materials and methods

Titanium (IV) oxide (P25, ≥ 99.5% trace metal basis) and calcium oxide (CaO, reagent grade) were purchased from Sigma-Aldrich. γ-Al₂O₃ (PURALOX SB200, 200 m²/g) was obtained from SASOL GmbH. All chemicals were used as received without further purification.

2.1. Preparation of CaO/P25 binary oxides

CaO was physically mixed with the benchmark photocatalyst P25 using a pestle and mortar. The resulting binary mixtures were labelled as 1Ca/Ti, 5Ca/Ti, 10Ca/Ti, 25Ca/Ti, 50Ca/Ti and 75Ca/Ti. Here, Ca and Ti stand for CaO and P25 (TiO₂), respectively, while the number before Ca represents the weight percent of the CaO component in the binary mixture.

2.2. Preparation of γ-Al₂O₃/P25 binary oxides

Puralox SBa200 γ-Al₂O₃ was physically mixed with P25 using a pestle and mortar. The resulting binary mixtures were labelled as 10Al/Ti, 30Al/Ti, 50Al/Ti, 70Al/Ti and 90Al/Ti. Here, Al and Ti stand for γ-Al₂O₃ and P25 (TiO₂), respectively, while the number before Al represents the weight percent of the γ-Al₂O₃ component in the binary mixture.

2.3. Preparation of CaO/γ-Al₂O₃/P25 ternary oxides

Since the binary Al/Ti sample with the optimum performance was obtained for the 70Al/Ti catalyst, this catalyst was further enriched with CaO in an attempt to improve the photocatalytic performance and achieve a more affordable photocatalyst formulation by decreasing the titania content of the photocatalyst for large scale applications. Along these lines, in order to keep the relative weight percent of γ-Al₂O₃ and P25 (TiO₂) components constant at 70/30 = 2.33 in the physically mixed ternary mixture, we added CaO to the Al/Ti binary mixtures such that the CaO content of the ternary mixture was 1, 5, 10, 25, 50, 70 and 90 wt.%. These samples were labeled as 1Ca/69Al/30Ti, 5Ca/66Al/29Ti, 10Ca/63Al/27Ti, 25Ca/53Al/22Ti, 50Ca/35Al/15Ti, 70Ca/21Al/9Ti and 90Ca/7Al/3Ti, where the numbers in the acronyms before each element represent the corresponding weight percentile of each metal oxide component (i.e., CaO, Al₂O₃ and TiO₂, respectively) in the ternary mixture.

2.4. Structural characterization

Crystal structures of the synthesized materials were analyzed using a Rigaku Miniflex X-Ray Diffractometer, equipped with Cu Kα radiation operated at 30 kV, 15 mA and 1.54 Å. Samples were pressed onto a standard-sized glass slides and scanned in the 20 range of 10-80° with a step width 0.01° s⁻¹. The Brunauer-Emmet-Teller (BET) specific surface area (SSA) measurements of the prepared photocatalysts were carried out using nitrogen adsorption–desorption isotherms obtained with a Micromeritics 3Flex surface area and pore size analyzer. Prior to SSA analysis, all samples were outgassed in vacuum for 2 h at 150 °C. In-situ Fourier transform infrared (FTIR) spectroscopy experiments involving NO₂ and pyridine adsorption and ex-situ FTIR experiments immediately after PHONOS catalytic activity tests were performed in two different custom-made spectroscopic batch reactors containing a Bruker Tensor 27 transmission FTIR spectrometer with a mercury-cadmium-telluride (MCT) detector. One of these reactors was also equipped with a quadruple mass spectrometer (QMS, SRS RGA 200) for NOₓ temperature programmed desorption (TPD) experiments. Details of the in-situ FTIR and TPD experiments are provided in the supporting information section. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) measurements were performed using an electron microscope (FEI Quanta 200) equipped with a field emission gun (FEG) and an EDX detector.

2.5. Photocatalytic activity measurements

The photocatalytic DeNOₓ experiments were performed at room temperature in flow mode by considering the experimental requirements that were reported in the ISO 22197-1 standard [42]. Inlet gas mixture that was introduced to the reactor (Fig. S1) contained 0.750 standard liters per minute (SLM) N₂ (g) (purity: 99.999%, Linde GmbH), 0.250 SLM O₂ (purity: 99%, Linde Gm Hh) and 0.010 SLM NO (100 ppm NO (g) diluted in balance N₂ (g), Linde GmbH). In order to obtain the gas flow values given above, mass flow controllers (MFCs, MKS1479A for N₂ (g) and O₂ (g) and Teledyne HFC-202 for NO (g) diluted in N₂ (g)) were utilized so that the total gas flow over the photocatalyst was stabilized at 1.010 SLM ± 0.05 SLM, where the NO (g) content of the inlet gas mixture was fixed at 1 ppm. The pressure inside the reactor was kept at atmospheric pressure and measured via a MKS Baratron 622B capacitance manometer. Humidity of the inlet gas mixture was also carefully controlled by dosing varying amounts of water vapor into the inlet gas mixture (i.e., before the reactor entrance) with the help of a Pern Select (PDMSXA-2500) semi permeable membrane module attached to an external variable-temperature water chiller/recycler for controlling equilibrium vapor pressure of externally recycled water. Typical relative humidity (RH) of the reactor was kept within 50 ± 3% at 23 ± 2°C, measured inside the reactor at the sample position using a Hanna HI 9565 humidity analyzer. Changes in the NO, NO₂, and total NO gas concentrations at the outlet of the reactor were monitored using a chemiluminescent NO₂ analyzer, Horiba Apna-370...
with a 0.1 ppb (i.e. 1×10^{-4} ppm) sensitivity and a data acquisition rate of 1 Hz.

For the experiments performed with UVA illumination, an 8 W UVA lamp (F8W/T5/B350, Sylvania, Germany) was utilized. The incoming light flux was measured carefully before and after each photocatalytic activity test with a radiometer (HD2302.0, Delta Ohm/Italy) using a PAR UVA probe (315–400 nm). Typical UVA-light photon flux used in the current experiments was within 7.7–8.2 W/m², where reactor temperature remained within 23 ± 2 °C during photocatalytic measurements under UVA illumination. In each performance analysis test, 900 mg of photocatalyst was packed in a 2 mm × 40 mm × 40 mm poly methyl methacrylate (PMMA) sample holder and placed into the flow reactor. In this work, photocatalytic performance tests for each photocatalyst sample was performed at least three times and average values are reported. Deviation between independent performance measurements for a given photocatalyst was typically < 2%.

In order to quantify the photocatalytic activity and selectivity, three different performance parameters (i.e. % NO Conversion, % Selectivity towards NOx Storage and DeNOx index) were obtained by integrating the concentration versus time plots, one of which is given as an example in Fig. 2. “% NO Conversion” shows the total oxidation activity of the photocatalyst and its definition is given in equation (1). Therefore; achieving high NO conversion values is one of the desirable outcomes of PHONOS processes.

$$\% \text{ NO Conversion} = \frac{\int ([NO]_0 - [NO]_{ads})dt}{\int [NO]_0 dt} \times 100$$

(1)

“% Selectivity” is defined in equation (2). This term represents the percent of NO photo-oxidation products stored on the surface of the catalyst in solid state. Therefore; achieving high values of % Selectivity is essential.

$$\% \text{ Selectivity} \text{ (towards NOx Storage)} = \frac{\int ([NO]_0 - [NO]_{ads})dt}{\int ([NO]_0 - [NO]_{ads})dt} \times 100$$

(2)

These calculations assume that NO (g) conversion is only due to solid state NOx storage and gaseous NO2 generation, excluding the formation of other gaseous N-containing species such as N2O (g) or N2 (g). This is a reasonable assumption as the major products of the photocatalytic NO + O2 reaction are NO2 (g), HONO (ads), HONO2 (ads) and N2O (g) molecules released to gas phase) per number of photons impinging on the catalyst surface during a 60 min-long photocatalytic activity test. Since the ultimate goal of the current work is to determine/compare/quantify the actual amounts of NOx abatement under irradiation conditions similar to that of solar radiation, we will mostly focus on the % NO Conversion and % Selectivity towards NOx storage values in our discussion, however all representative photonic efficiency data are also provided in the Supporting Information Section (Figs. S2-S6).

3. Results and discussion

3.1. Structure analysis

Individual X-ray diffraction patterns of bare Degussa P25, γ-Al2O3 and CaO along with binary and ternary oxide systems are presented in Fig. 1. It can be seen in Fig. 1 that P25 reveals diffraction signals associated with predominantly anatase (ICDD Card no: 00-021-1272) and to a lesser extent, rutile (ICDD Card No: 00-021-1276) phases of titania. XRD pattern obtained for alumina (Fig. 1) shows characteristic
Fig. 2. Concentration versus time profiles obtained during a typical 1 h Photocatalytic NOx(g) Oxidation and Storage (PHONOS) activity test performed on 25Ca/53Al/22Ti photocatalyst in a custom-made photocatalytic flow reactor. Red (bottom), black (middle) and blue (top) traces correspond to NO2(g), NO (g) and total NOx (i.e. NO + NO2) concentrations measured as a function of time (with a 1 Hz acquisition rate) during the photocatalytic activity test, respectively. Feed composition: N2(g) 0.750 SLM, O2(g) 0.250 SLM, and NO(g) 0.010 SLM (100 ppm NO (g) diluted in balance N2 (g)), RH 50% at 23 °C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

diffraction features consistent with the γ-Al2O3 phase (ICDD Card No: 00-010-0425) [46]. On the other hand, XRD pattern of commercial CaO given in Fig. 1 is more complex due to the presence of CaO (ICDD Card No: 00-037-1497) and Ca(OH)2 (ICDD Card No: 00-044-1481) phases. Calcium hydroxide is formed as a result of spontaneous reaction of CaO with atmospheric moisture [47]. SSA values of pure CaO, P25 and γ-Al2O3 used in the catalyst preparation were measured to be 3, 50, 200 m2/g, respectively. Since the prepared binary and ternary mixed oxides were simple physical mixtures, SSA values of these materials can be readily determined using the weighted linear combination of the SSA values of their individual components. For instance, for a mixture with a particular composition of xCaO/γAl2O3/TiO2 (where, x, y, and z stand for the wt.% of each corresponding component), total SSA can be calculated as [(x(3) + y(200) + z(50))/100]. Validity of this expression was also experimentally verified using 25Ca/Ti sample (experimentally measured BET SSA = 39 m2/g and SSA obtained by theoretical weighted linear combination = 38 m2/g) and the 25Ca/35Al/22Ti/Ti sample (experimentally measured BET SSA = 113 m2/g and theoretical SSA obtained by weighted linear combination = 118 m2/g). In-situ FTIR spectroscopic experiments involving NO2 adsorption (Figs. S7a-S7c) on CaO, TiO2(P25) and γ-Al2O3 at room temperature revealed the formation of predominantly nitrate species and to a lesser extent to nitrite species with various adsorption geometries (e.g. monodentate, bidentate, bridging, etc.). NO2-TPD experiments (Figs. S7d-S7f) indicated that among these three different materials, CaO yielded the highest NO2 adsorption and storage capacity per unit catalyst mass, while TiO2(P25) and γ-Al2O3 gave rise to a similar magnitude of NO2 adsorption and storage capacity per mass of catalyst, which was lower than that of CaO (Fig. S8). Pyridine adsorption on CaO, TiO2(P25) and γ-Al2O3 at room temperature was also investigated via in-situ FTIR spectroscopy which verified that the Lewis acidity of these materials increased in the following order: CaO < TiO2(P25) < γ-Al2O3 (Fig. S9). In very good accordance with the current BET SSA measurements, SEM images (Figs. S10a-S10f) suggest that average particle (grain) sizes of the CaO, TiO2(P25) and γ-Al2O3 samples can be ranked in the following order: Al2O3 ≪ TiO2 ≪ CaO. Furthermore, EDX analysis (Fig. S10g-S10i) also verified the chemical composition of these samples and indicated

the lack of any contaminations. Furthermore, ex-situ FTIR experiments immediately performed after PHONOS activity tests (Fig. S11) verified the presence of nitrates on the spent photocatalysts.

3.2. Photocatalytic NOx oxidation and storage (PHONOS) performance tests

In order to demonstrate the catalytic activity of the binary and ternary mixed oxide photocatalysts, we performed photocatalytic NOx (g) oxidation and storage (PHONOS) tests using a custom-made photocatalytic flow reactor. UVA-light induced removal of NO (g) was monitored under in-situ conditions for different photocatalysts. Fig. 2 shows a typical set of time-dependent NO (g), NO2 (g) and total NOx (g) (i.e. NO (g) + NO2 (g)) concentration profiles as a function of irradiation time during the NO photo-oxidation over 25Ca/53Al/22Ti photocatalyst. In the first stage of the photocatalytic activity tests, a synthetic polluted air gas mixture containing ca. 1 ppm NO (g) was fed to the photocatalyst surface under dark conditions. During this initial phase (i.e. first 15 min), a minor transitory fall in the total NO (g) and NO (g) concentrations was observed due to adsorption of NOx species on the reactor lines, expansion of the gas in the reactor as well as non-photocatalytic adsorption of NOx on the photocatalyst surface. In addition, a tiny amount of NO2 (g) was produced due to thermal catalytic processes occurring on the catalyst surface. Following the saturation of the reactor system and photocatalyst surface, NOx (g) and NO (g) levels quickly returned to the original inlet values and reached a steady state in dark conditions.

Next, UVA-light irradiation was turned on after the first ca. 15 min (Fig. 2) and a drastic fall in the NO (g) and total NOx (g) concentrations was detected along with a small increase in the NO2 (g) level. While the latter observation suggests the photocatalytic oxidation of NO (g) into NO2 (g), decrease in the NO (g) and total NOx (g) concentrations indicates the solid state storage of NO (g) and NO2 (g) in the form of chemisorbed NOx, nitrates and/or nitrates on the photocatalyst surface [5,48]. In principle, NO2 (g) and/or N2O (g) can also be produced as a result of direct photocatalytic decomposition and photo-reduction of NO(g) [49]. However, this is known to be a relatively inefficient reaction pathway, particularly in the presence of O2 and H2O. Thus, N2 and/or N2O formation can readily be ruled out in the current study as insignificant photocatalytic routes [9]. It is apparent in Fig. 2 that photocatalytic NOx abatement action continues after this initial stage during the entire duration of the activity test. Thus, total NOx abatement effect can be calculated by integrating the relevant traces for the entire duration of the PHONOS test.

3.2.1. Enhancement of TiO2 via incorporation of a basic oxide with a low specific surface area: PHONOS tests for CaO/P25 binary metal oxide mixtures

Photocatalytic NOx (g) oxidation and storage (PHONOS) activity tests were performed for CaO/P25 binary oxides with different compositions and compared with that of a commercial benchmark P25 titania photocatalyst under identical experimental conditions (Fig. 3). Fig. 3a illustrates the NO (g) conversion % and NOx storage selectivity % values. Meanwhile, overall photocatalytic NOx abatement performances of all of the investigated photocatalysts are presented in Fig. 3b in terms of their corresponding DeNOx index values.

It is clear from Fig. 3a and b that P25 commercial benchmark has a reasonably high NO conversion. On the other hand, P25 benchmark catalyst also produces a very large quantity of unwanted NO2 (g). Despite the fact that the adsorption capacity of TiO2 for NO2 (g) is much higher than that for NO (g) [50], photocatalytic NOx (g) production rate and the total number of NO2molecules generated can readily overwhelm the NO2 adsorption capacity of titania leading to unwanted NO2 slip/release into the atmosphere. Since NO2 is a much more toxic pollutant than NO, P25 does not qualify as an efficient photocatalyst for NOx abatement under UVA light irradiation, evident by its low NO2
storage selectivity and extremely negative DeNOx index (-0.32).

When the photocatalytic performances of CaO/P25 binary metal oxide-based photocatalysts are compared to that of P25 (Fig. 3), it can be seen that incorporation of CaO to P25 results in striking improvements such as increased NO conversion %, increased NOx storage selectivity % (Fig. 3a), and increased DeNOx index values (Fig. 3b). Considering the relatively low surface area of the CaO material used in the current work (i.e. 3 m²/g), significant boost in the observed NOx storage for the CaO/P25 binary metal oxide-based photocatalysts suggests that the basic nature of the CaO is the main driving force for the enhanced NOx storage selectivity.

Comparison of the relative photocatalytic performances of CaO/P25 binary oxides with different CaO loadings (Fig. 3b) clearly reveals a volcano-plot like behavior suggesting that 25Ca/Ti photocatalyst demonstrates the optimum performance by maximizing photocatalytic NOx oxidation and storage, while minimizing the NO2 release to the atmosphere. As opposed to P25 titania commercial benchmark photocatalyst, NO conversion % was improved from 34% to 46% and NOx storage selectivity % was enhanced from 34% to 77% for 25Ca/Ti (Fig. 3a).

Here, it could be interesting to discuss the ca. 12% increase in NO conversion upon incorporation of a photocatalytically inactive component such as CaO to P25 (Fig. 3). This can be partly explained by non-photocatalytic (passive) NO adsorption and storage on CaO, as Fig. 3 shows that pure CaO can lead to ca. 4% NO conversion. The boost in NO conversion after diluting P25 with CaO can be explained by considering a synergistic interaction between titania (P25) photocatalytic active sites and CaO non-photocatalytic storage sites, where the surface and gas phase transport/diffusion of NOx oxidation products from the active sites of P25 (towards the CaO domains prevents the saturation/poisoning of the titania active sites with the reaction products. This can be supported via the photocatalytic mechanism proposed by Macphee et al. (reactions 7–17) [41]. When NO2 is transported from the titania surface to the calcium oxide surface in vicinity; radicals used in NO2 oxidation reactions (16,17) become available to be utilized in NO oxidation reactions (10,14,15) rather than in NO2 oxidation. Hence, the increase in the availability of reactive species eventually leads to an increase in total NO conversion in the CaO/P25 system. Thus, the energetic effect between CaO and titania (moderately increasing the NOx conversion capability) cannot be ruled out under UVA irradiation. On the other hand, while CaO seem to increase NO conversion to a certain extent, the more noteworthy function of CaO is the storage of photo-generated NO2 species into other oxidized surface species. It is well known that NO (g) + O2 (g) mixtures as well as NO2 (g) can readily adsorb on numerous metal oxide surfaces in the form of nitrates, nitrates, as well as their protonated acidic forms [24,26,27,30,39,40,52]. NOx adsorption and successive oxidation and storage in the form of nitrates also serve as the basis of the non-photocatalytic NSR catalysis (also called lean NOx traps, LNT) that is commonly used in tail-pipe emission control systems of automobiles [5–7].

These photocatalytic results suggest that the primary photocatalytic active sites of the CaO/P25 system that are responsible for the NO (g) photooxidation process reside on titania, since addition of different CaO loadings led to only a minor boost in NO conversion. However, a synergistic effect between CaO and titania (moderately increasing the NO conversion capability) cannot be ruled out under UVA irradiation. On the other hand, while CaO seem to increase NO conversion to a certain extent, the more noteworthy function of CaO is the storage of photo-generated NO2 species into other oxidized surface species. It is well known that NO (g) + O2 (g) mixtures as well as NO2 (g) can readily adsorb on numerous metal oxide surfaces in the form of nitrates, nitrates, as well as their protonated acidic forms [24,26,27,30,39,40,52]. NOx adsorption and successive oxidation and storage in the form of nitrates also serve as the basis of the non-photocatalytic NSR catalysis (also called lean NOx traps, LNT) that is commonly used in tail-pipe emission control systems of automobiles [5–7].

To be an effective photocatalyst, the conversion of the toxic NO2 to NO3⁻ needs to be more efficient than the conversion of NO to NO2. Furthermore, the findings of Rodriguez and co-workers [51] about nitrate formation on TiO2 (110) rutile surface can also enlighten the better performance of binary mixtures. In their study, it was reported that surface nitrate formation occurs via the disproportionation of NO2 on Ti sites (reaction 18) rather than the direct NO2 adsorption on O sites. Due to this disproportion mechanism, produced NO molecules decrease the total conversion of NO. Thus, when NO2 molecules are transferred to non-photocatalytic NOx storage domains of the binary mixture, NO2 disproportion rate on Ti sites diminishes which in turn, boosts the NO conversion on titania. 2NO2ads → NO3⁻ads + NO5h (18)
3.2.2. Enhancement of TiO$_2$ via incorporation of an acidic oxide with a high specific surface area: PHONOS tests for γ-Al$_2$O$_3$/P25 binary metal oxide mixtures

Next, γ-Al$_2$O$_3$/P25 binary oxides with varying compositions were tested for NO$_x$ abatement under UVA irradiation. The corresponding conversion and selectivity values for γ-Al$_2$O$_3$/P25 binary oxides are shown in Fig. 4. Fig. 4a indicates that addition of γ-Al$_2$O$_3$ to P25 improves the NO$_x$ storage capacity in a noticeable manner, while enhancing the NO conversion rather marginally. The optimum performance among the investigated γ-Al$_2$O$_3$/P25 binary oxides was achieved for the 70Al/Ti sample. It must be noted here that the maximum NO$_x$ storage selectivity of 67% achieved by the best performing γ-Al$_2$O$_3$/P25 binary oxide (i.e. 70Al/Ti) was still lower than that of the best CaO/P25 photocatalyst (i.e. 25Ca/Ti with a selectivity of 77%). This shows that in the case of binary mixed oxides, greater basicity of CaO in CaO/P25 samples is a more decisive factor than the higher surface area of γ-Al$_2$O$_3$ in the γ-Al$_2$O$_3$/P25 binary mixtures (note that SSA values of 25Ca/Ti vs. 70Al/Ti are 39 m2/g and 155 m2/g, respectively).

DeNO$_x$ Index values for γ-Al$_2$O$_3$/P25 photocatalysts given in Fig. 4b show that 70Al/Ti reveals the best performance among all of the investigated γ-Al$_2$O$_3$/P25 binary mixtures under UVA irradiation. It is imperative to mention here that although 70Al/Ti is the γ-Al$_2$O$_3$/P25 binary mixture with the highest DeNO$_x$ index value of ca. 0.001 (shown as 0.00 in Fig. 4b), it is still well below the DeNO$_x$ index value of 25Ca/Ti (+0.14). Although the SSA of 70Al/Ti is significantly higher than that of 25Ca/Ti (i.e. 155 m2/g vs 39 m2/g, respectively), lower performance of 70Al/Ti indicates that rather than the SSA, surface basicity of the NO$_x$ storage domain is the determining factor for the ultimate performance of the P25 titanias systems modified with additional metal oxides for NO$_x$ storage. This observation also indicates that although number of available surface adsorption sites per gram of material is much greater for γ-Al$_2$O$_3$ than that of CaO, because of the relatively weaker adsorption energy of NO$_2$ species on γ-Al$_2$O$_3$, as compared to that of CaO, γ-Al$_2$O$_3$ can store a significantly smaller number of NO$_2$ molecules on its surface.

Here, it is also worth mentioning that in order to assess the photocatalytic performance properly, DeNO$_x$ index values (Fig. 4b) should also be evaluated along with the corresponding NO Conversion % and NO$_2$ Storage Selectivity % values (Fig. 4a). To illustrate this, one may consider the DeNO$_x$ index value of pure γ-Al$_2$O$_3$, which is higher than that of any of the other γ-Al$_2$O$_3$/P25 photocatalysts, as well as pure P25 benchmark photocatalyst (Fig. 4b). Careful investigation of Fig. 4a clearly yields that γ-Al$_2$O$_3$ is almost entirely inactive (i.e. NO Conversion 4%) and hence, yields a DeNO$_x$ value of ca. 0.01 due to the lack of any notable activity. In contrast, 70Al/Ti has a significantly high photocatalytic activity, however high NO conversion of 70Al/Ti is accompanied by low NO$_2$ storage selectivity, rendering it a photocatalyst with a DeNO$_x$ index value of ca. 0.001 (shown as 0.00 in Fig. 4b).

3.2.3. Enhancement of TiO$_2$ via incorporation of both a basic and an acidic oxide: PHONOS tests for CaO/γ-Al$_2$O$_3$/P25 ternary metal oxide mixtures

As discussed above, best photocatalytic DeNO$_x$ performance among the γ-Al$_2$O$_3$/P25 catalysts was achieved for the 70Al/Ti sample (Fig. 4b). Therefore, this catalyst was further enriched with CaO in an attempt to further improve its performance and also to obtain a more affordable photocatalyst formulation for large scale applications by decreasing the relatively more expensive titania content. PHONOS test results for these ternary metal oxide mixtures (CaO/γ-Al$_2$O$_3$/P25) are given in Fig. 5. Based on these results, it was found that among the analyzed CaO/γ-Al$_2$O$_3$/P25 ternary mixed oxides, the highest DeNO$_x$ index value of +0.27 was obtained for the 50Ca/35Al/15Ti sample, which was even higher than that of 25Ca/Ti binary mixed oxide sample (+0.14) (Fig. 3). These observations reveal a delicate trade-off between the relative basicity and the relative SSA of the NO$_x$ storage domains. It is apparent that increasing the overall basicity of the metal oxide mixture by increasing the corresponding CaO content/loading, increases the number of strongly binding NO$_x$ adsorption sites. However, this positive effect is obtained at the expense of the decreasing SSA and porosity of the overall mixture, which hinders NO$_x$ transport from the gas phase to the surface. Therefore, it is clear that in the case of a ternary metal oxide mixture with an optimized formulation (e.g. 50Ca/35Al/15Ti), photocatalytic system can utilize both the strongly-binding adsorption sites of the basic CaO as well as the weakly/moderately-binding adsorption sites of the more acidic γ-Al$_2$O$_3$ domains, without sacrificing the total surface area of the mixture. Furthermore, although the total number of photocatalytic active sites (i.e. TiO$_2$ loading) in 50Ca/35Al/15Ti is less than that of P25, 25Ca/Ti and 70Al/Ti samples, they are still sufficient to provide a superior performance in the first 1 h of the PHONOS tests.

However as will be demonstrated in the next section, this initially superior performance of the 50Ca/35Al/15Ti system containing only 15 wt.% TiO$_2$ may quickly deteriorate during the operation of the catalyst for extended durations of time, due to the saturation/blocking/poisoning of the photocatalytic active sites on TiO$_2$ with NO$_x$ oxidation products, emphasizing the importance of the TiO$_2$ loading in the overall ternary mixed oxide formulation.
3.2.4 Long-term performance and catalytic stability tests

Long-term photocatalytic stability is an essential requirement for end user applications. Thus, in order to demonstrate the photocatalytic stability of the currently investigated materials, we performed a series of long-term PHONOS experiments under continuous UVA irradiation. When the corresponding data for pure P25 in Fig. 6a is examined, it can be immediately noticed that NO conversion % of P25 stays almost invariant during the entire 12 h stability test with only a minor attenuation of 2%. On the other hand, NOx storage selectivity of P25 monotonically decreases over time due to the saturation of the P25 surface with photo-oxidation products. It can be seen in Fig. 6a that NOx storage selectivity of P25 decreases from 34% to 23% (i.e. decreases to 0.3 times of its original value) after the 12 h stability test. This loss in selectivity is also apparent by the monotonically decreasing DeNOx index value of the P25 commercial benchmark catalyst measured during the 12 h stability test (Fig. 6b), rendering the spent P25 catalyst an extremely unpreferable photocatalyst with a severely negative DeNOx index value of -0.37. Therefore, it can be argued that the loss in overall photocatalytic performance of P25 commercial benchmark photocatalyst upon extended duration of use is mostly due to the loss in NOx storage selectivity and to a lesser extent due to the loss in NO conversion.

Fig. 6a and b show that NO conversion %, NOx storage selectivity %, and DeNOx index values decrease monotonically in a drastic fashion as a function of time for the 70Al/Ti and 50Ca/35Al/15Ti samples. During the 12 h stability test, DeNOx index value of 70Al/Ti falls from 0.00 to -0.13, while DeNOx index value of 50Ca/35Al/15Ti decreases from +0.27 to +0.05.

It is important to note that as in the case of P25, decrease in NO conversion % is also relatively minor for the 70Al/Ti catalyst, suggesting that both P25 and 70Al/Ti catalysts still exhibit a sufficiently large number of available photocatalytically active sites even after 12 h of operation and they mostly suffer from the loss in NOx storage selectivity due to the adsorption of oxidation products on the acidic γ-Al2O3 domains (i.e. saturation of alumina).

On the other hand, this is not the case for the 50Ca/35Al/15Ti ternary mixed oxide photocatalyst, where concomitant to NOx storage selectivity, NO conversion also shows a very substantial decrease after 12 h of operation. This can be attributed to the scarcity of the titania active sites in the 50Ca/35Al/15Ti catalyst composition (note that TiO2 wt.% in the 25Ca/Ti, 70Al/Ti and 50Ca/35Al/15Ti catalysts are 75, 30, and 15 wt.%, respectively). These limited number of titania active sites are blocked by the oxidation products upon extended durations of operation, leaving an insufficiently small number of titania active sites for photocatalytic oxidation.

Interestingly, photocatalytic stability data for 25Ca/Ti given in Fig. 6a and b show that in spite of the measurable decrease in NO conversion %, 25Ca/Ti is capable of preserving most of its NOx storage selectivity over time. Along these lines, DeNOx index value of 25Ca/Ti (+0.14) obtained after the first 1 h of the stability test, decreases to a value of +0.09 after the 12 h stability test. In other words, 25Ca/Ti exhibits an efficient detoxification (NOx abatement) function even after 12 h of use, outperforming P25 titania commercial benchmark and 70Al/Ti catalysts (which remain unacceptable DeNOx photocatalysts during the entire photocatalytic stability tests), or the 50Ca/35Al/15Ti photocatalyst (which quickly loses its initially favorable performance after 12 h).

It should be highlighted that although the total duration of the stability tests presented in Fig. 6 was 12 h, these tests can reflect even much longer-term performances of the investigated catalysts that may presumably extent to many days. This is due to the fact that all of the current PHONOS performance tests were carried out using a NO(g) concentration of 1 ppm (or 1000 ppb). On the other hand, typical NO(g) pollution levels in urban settings (Table S1) are typically 10 to 20
times less than the currently used NO (g) concentration of 1000 ppb. Therefore, currently studied photocatalysts are likely to preserve their catalytic performances under realistic urban settings for durations that are much longer than the duration of the currently performed 12 h stability tests. From this perspective, currently presented stability tests can be considered as accelerated performance tests.

This argument is also supported by the work of Yu et al. [53], demonstrating that the inlet concentration of NO plays an important role in the photocatalytic activity of semiconductors. In their study, they conducted photocatalytic NO oxidation using NO concentrations ranging from 0.1 ppm to 1.0 ppm while keeping other experimental parameters constant. They reported that NO conversion decreased with increasing NO concentration. This finding was later confirmed by Husken and co-workers [54], who verified that higher pollutant concentrations diminished the DeNOx performance. Therefore, it is clear that the photocatalytic performance results presented in the current work at high NOx concentrations can be considered as “lower-bound” values and the operational performance of the currently investigated photocatalytic materials under realistic (i.e. lower) urban atmospheric NOx levels are expected to be greater than the currently reported values. Accordingly, materials studied here are likely to operate effectively over a duration of many days under realistic urban NOx pollution levels.

3.2.5. Effect of humidity on PHONOS performance

Interaction of water with catalytic metal and metal oxide surfaces have been summarized in two extremely comprehensive reviews by first Thiel and Mader [55] and later by Henderson [56]. These reviews as well as other more recent studies [41,57] provide a vast number of examples where adsorbed molecular water and/or the dissociation products of adsorbed water (e.g., protons, hydroxyl) radicals or hydroxide species can either facilitate or hinder catalytic reactivity under different conditions. As can be seen in reactions (7–17) given above [41], photon absorption and electron-hole (e−–h+)
pair generation on titania surface (reaction 7) results in the appearance of two separate branches of photocatalytic DeNOx pathways which include either hole-mediated or electron-mediated steps. Hole-mediated routes are either initiated by the dissociation of adsorbed molecular water (reaction 8) forming •OHads and H+ species or trapping of holes by surface oxygen species of titania as in reaction 13. On the other hand, electron-mediated pathways begin with the adsorption of O2 on titania and formation of superoxide (O2•−) species (reaction 9). Hence, it was reported that both molecularly adsorbed (chemisorbed/physiosorbed) water as well as dissociated water species are essential to initiate photocatalytic DeNOx pathways [41].

Having said that, in a recent related study, it was shown by Wang et al. [58] that during the hole-mediated photocatalytic decomposition of trimethyl acetate, photocatalytic activity was hindered by water due to the dissociation of water on oxygen vacancies of titania, forming bridging OH (OHb) surface species which act as electron traps and form charged hydroxyl (i.e., hydroxide) species. It was shown by these authors that charged OHb hydroxide surface functionalities serve as hole scavengers, facilitating electron-hole recombination and eventually, diminish the photocatalytic oxidation performance of titania. In the case of photocatalytic NOx oxidation and storage (PHONOS), nitrogen atoms in NO (g) possess an oxidation state of +2 and are photocatalytically oxidized to +3, +4, or +5 states and form NO2−, NO2, and NO3− (as well as protonated forms of some of these species) [39]. In other words, being an oxidation reaction, PHONOS reaction mechanism has a strong dependence on the hole concentration on the titania surface which drive the hole-mediated photocatalytic DeNOx pathways initiated by reaction 8. Hence, generation of hole scavengers such as negatively charged surface hydroxide species may hinder the photocatalytic activity by facilitating e−–h+
recombination at the surface hydroxide sites.

In addition, presence of excess concentrations of water at high RH may trigger dissociation of nitrates and/or nitrates into NO2 through two different pathways. In the first pathway, interaction of physisorbed water molecules and NO2 (reaction 19) leads to nitrate/nitrate dissociation in a non-photocatalytic manner to form NO, decreasing the total NO conversion [41,59]. The second pathway may include dimerization of HO• radicals. When the surface coverage of water increases, HO• radicals, which are essential for NOx oxidation, can be consumed by forming hydrogen peroxide which decomposes into O2 and H2O (reaction 20,21). Therefore, the decrease in NO conversion becomes unavoidable [60].

Here, it should be noted that humidity effects discussed above are subject to significant variations as a result of changes in experimental/operational conditions and reactor design. It has been reported that, when relatively lower NO concentrations (e.g. 1 ppm) were used to investigate the influence of relative humidity on conversion, rate of NO photo-oxidation decreased with increasing relative humidity (as observed in our current results, Fig. 7) [54,61]. On the other hand, when higher NO concentrations were used (e.g. 5–147 ppm), NO conversion either increased or remained invariant with increasing relative humidity (RH) [62–64]. Furthermore, for relatively lower initial concentrations of NO such as ≤ 1 ppm, competition between NO and water for surface adsorption sites was reported to be a less critical phenomenon [53,65]. Consequently, conversion and storage performances of a photocatalytic material should be evaluated under comparable experimental conditions by considering the effects of critical parameters such as RH, flow rate, composition of the feed gas, experimental setup and design, catalyst loading, sample preparation techniques, type/power/emission spectrum of the irradiation light source, feed gas temperature.

![Graphs](https://example.com/graphs.png)

Fig. 7. NO (g) conversion %, NOx storage selectivity % and DeNOx index values of selected samples during humidity tests carried out under UV irradiation.
and the catalyst surface temperature during the irradiation.

Therefore, the general reactivity trends in Fig. 7a for P25, 25Ca/Ti, 70Al/Ti, 25Ca/53Al/22Ti and 50Ca/35Al/15Ti suggest that at 20% RH there is a sufficient number of adsorbed water molecules that can trigger photocatalytic hole-mediated reactions, resulting in high NO conversion, as well as high NO₂ storage selectivity. Furthermore, at 20% RH, surface concentration of adsorbed water species is not detrimental high and most of the photocatalytic active sites on titania are still available for NO and NO₂ adsorption and further reaction.

When the RH% was increased to 50%, P25 benchmark catalyst exhibits a minor change in NO conversion but shows a drastic fall in its NO₂ storage selectivity (Fig. 7a). This observation indicates that at 50% RH, P25 still possesses a sufficient number of exposed (unblocked) photocatalytic adsorption sites to perform efficient NO oxidation to NO₂. However, at 50% RH, generated NO₂ cannot be stored efficiently in the form of nitrates/nitrites possibly due to the increased surface concentration of charged OH⁻ (hydroxide) species acting as hole-sca
devengers as well as due to other non-catalytic suppression pathways discussed above. Finally, under extremely high humidity conditions (i.e. 80% RH), both NO conversion, and NO₂ storage selectivity values of P25 benchmark photocatalyst decrease in a drastic manner due to the increasing number of charged OH⁻ (hydroxide)hole-sca
devengers as well as increasing competitive adsorption of molecular water on titania photocatalytic active sites preventing the adsorption of reaction products such as NO and O₂. Along these lines, it can be seen in Fig. 7b that P25 benchmark catalyst exhibits negatively variable NO conversion and NO₂ storage selectivity at all of the investigated humidity conditions, with a DeNO₅ index revealing its highest value at 20% RH.

In the case of 25Ca/Ti sample, Fig. 7a indicates that, both photocatalytic NO conversion and NO₂ storage selectivity are practically identical at 20 and 50% RH. This argument suggests that in the 25Ca/Ti binary mixture, due to presence of a large amount of titania (75 wt.%) in the catalyst composition, titania active sites are still not blocked in a severe fashion by the competitive adsorption of molecular water or its dissociation products at 20 and 50% RH. Within this humidity range, it is likely that basic CaO surface sites serve as a sacrificial adsorption sites that can capture water and prevent increasing surface coverages of competitively adsorbing water and hinder the formation of a large number of charged OH⁻ (hydroxide) hole-scavengers on titania sites.

On the other hand, when the RH value was increased to 80%, a drastic decrease in NO conversion along with only a mild decrease in NO₂ selectivity was observed for the 25Ca/Ti sample (Fig. 7a). It is apparent that at 80% RH, 25Ca/Ti system is still capable of storing photocatalytically generated NO₂ species in the form of nitrate/nitrates on the basic CaO domains, as well as on the hydrated forms of the CaO domains. In stark contrast, photocatalytic oxidation of NO to NO₂ on titania was severely suppressed indicating poisoning of the titania photocatalytic active sites. This observation can be explained in the light of the detailed surface spectroscopic (infrared reflection absorption spectroscopy, IRAS and X-ray photoelectron spectroscopy, XPS), surface imaging (scanning tunneling microscopy, STM) and density functional theory (DFT) computational modeling studies of Fujimori et al. [66] on the interaction of water with CaO(001) ultrathin films grown on Mo(001) substrate at room temperature. In this work, authors report that hydration of CaO(001) with water occurs in a gradual manner in several stages, where in the earlier stages (i.e. at relatively smaller water coverages of < 0.3 ML, ML: monolayer) small water/hydroxyl clusters aggregate on the CaO(001) surface. When the CaO(001) surface is saturated with water to obtain a surface water coverage of 0.5 ML, CaO(001) surface forms a fully hydroxylated and a heavily reconstructed (disordered) state exhibiting partially solvated Ca²⁺ and OH⁻ ions on its surface. Based on these findings, it can be argued that under extremely humid conditions, DeNO₅ performance of 25Ca/Ti photocatalyst (Fig. 7) deteriorates due to i) hydration of the CaO domains, ii) formation of solvated Ca²⁺ and OH⁻ species on the hydroxylated CaO domains, and iii) diffusion/transport of these species on titania domains, leading to site blocking by competitive adsorption on titania active sites, generation of hole-scavenging sites on titania, and occurrence of other non-photocatalytic hindering reactions (reactions 19–21).

In the case of 70Al/Ti binary mixture, PHONOS behavior at 20 and 50% RH values can be explained in an analogous manner to that of 25Ca/Ti, where, high surface area γ-Al₂O₃ domains act as sacrificial adsorption sites for water, preventing the poisoning of titania active sites at low and medium humidity conditions. On the other hand, it should be noted that γ-Al₂O₃ is a relatively acidic metal oxide exhibiting predominantly weaker NO₂ adsorption sites, in addition to a much fewer number of moderate-strength NO₂ adsorption sites. Therefore, NO₂ storage selectivity of γ-Al₂O₃ is much more susceptible to the loss of the moderately binding NO₂ adsorption sites on γ-Al₂O₃ due to competitive water adsorption. It was reported in the literature that presence of high concentrations of water may decrease the nitrate formation on alumina by a factor of 90% due to the formation of hydroxyl groups on alumina [35,37]. This is also evident in the 80% RH data for 70Al/Ti (Fig. 7), where NO₂ selectivity reveals a significant attenuation at extreme humidity values. Interestingly, NO conversion on 70Al/Ti is not affected as severely as in the case of 25Ca/Ti. This is in stark contrast to the 25Ca/Ti system and can be attributed to the lack of the generation of solvated OH⁻ ions on γ-Al₂O₃ which are also not transferred onto titania domains to form hole-scavenging sites.

Influence of humidity on the 25Ca/53Al/22Ti and 50Ca/35Al/15Ti samples reveal pattern that are in between that of 25Ca/Ti and 70/Ti binary mixtures, as can be expected from the composition of these ternary mixtures which bear combined traits of both of these different binary mixtures. At RH values of 20 and 50%, both 25Ca/53Al/22Ti and 50Ca/35Al/15Ti ternary mixtures can maintain significantly positive DeNO₅ index values, albeit a decrease in such values with increasing humidity (due the deactivation phenomena discussed above for 25P25 Ca/Ti, and 70Al/Ti samples). On the other hand, upon exposure to extreme humidity, both 25Ca/53Al/22Ti and 50Ca/35Al/15Ti ternary mixtures reveal a stark decrease in DeNO₅ index values. This observation suggests that the ternary oxide with a fewer number of titania active sites (i.e. mixture with the lower TiO₂ wt.%, 50Ca/35Al/15Ti) seems to be prone to a more severe performance loss.

In overall, currently presented humidity-dependent PHONOS tests on binary and ternary mixed oxide photocatalytic systems suggest that presence of low to moderate (20–50%) RH levels is crucial for the photocatalytic NO oxidation, while higher levels of RH (e.g. 80% RH) can be detrimental.

4. Conclusion

Major findings of the current work can be summarized as follows:

- 25 wt.% CaO addition to P25 titania significantly enhances both short term (1h) as well as long term (12h) PHONOS performance of P25, enabling CaO/P25 binary mixtures to significantly outperform conventional P25 titania benchmark photocatalysts. These positive effects were attributed to a synergistic interaction between titania and CaO domains boosting NO conversion as well as the extreme basicity of the CaO domains providing strong adsorption sites for NO₂ storage. An important shortcoming of the investigated CaO/P25 binary mixtures was identified to be their relatively low SSA values (i.e. 39 m²/g).

- Although, 70 wt.% Al₂O₃ addition to P25 leads to noticeable improvement in both short term (1 h) and long term (12 h) PHONOS performance, as well as a drastic increase in SSA (i.e. 155 m²/g), DeNO₅ index values of γ-Al₂O₃/P25 binary mixtures were not high enough to consider them as acceptable DeNO₅ photocatalysts. This was mostly attributed to the presence of weak/moderate strength NO₂ adsorption sites on γ-Al₂O₃.

- Hence, CaO/γ-Al₂O₃/P25 ternary mixtures were prepared...
containing both highly-basic CaO domains for strong NO2 adsorption, as well as more acidic γ-Al2O3 sites for low/medium strength NO2 adsorption. Optimized ternary mixed oxide (25Ca/53Al/22Ti) revealed a high SSA (i.e. 113 m²/g) and a favorably positive DeNOx index after 1 h and 12 h PHONOS tests.

- PHONOS performance tests carried out at varying RH values of 20, 50 and 80% at 23 °C showed that DeNOx performance deteriorated with increasing RH. 25Ca/53Al/22Ti preserved its favorable overall detoxification effect under all of the investigated RH conditions, while, 25Ca/Ti and 70Al/Ti binary mixtures lost their overall NOx abatement capabilities at 80% RH.
- Using the mechanistic findings reported in the current text, ultimate composition of ternary mixtures can be fine-tuned in order to engineer photocatalytic systems with high initial performance, long-term stability and enhanced tolerance against extreme humidity.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

EO, MI, MC acknowledge the financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) (Project Code: 116M435). Authors thank SASOL GmbH for providing PURALOX and Technological Research Council of Turkey (TUBITAK) (Project Declaration of Competing Interest

EO, MI, MC acknowledge the financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) (Project Code: 116M435). Authors thank SASOL GmbH for providing PURALOX Sba200 γ-Al2O3 materials. EO acknowledges the scientific collaboration with TARLA project founded by the Ministry of Development of Turkey (project code: DPT2006K – 120,470). Authors also acknowledge Zehra Aybügüm Ök for her support in ex-situ FTIR experiments.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2019.118227.

References

