Pt/CeO$_x$/ZrO$_x$/γ-Al$_2$O$_3$ Ternary Mixed Oxide DeNO$_x$ Catalyst: Surface Chemistry and NO$_x$ Interactions

Stanislava Andonova,† Zehra Aybegüm Ok,‡ Nikola Drenchev,† Emrah Ozensoy,*§ and Konstantin Hadjiivanov*†§

†Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
‡Chemistry Department, Bilkent University, 06800 Bilkent, Ankara, Turkey
§UNAM-National Nanotechnology Center, Bilkent University, 06800, Ankara, Turkey
¶Bulgarian Academy of Sciences, Sofia 1040, Bulgaria

Supporting Information

ABSTRACT: Surface chemistry and the nature of the adsorbed NO$_x$ species on a Pt/CeO$_x$-γZrO$_2$/Al$_2$O$_3$ catalyst were investigated by IR spectroscopy, X-ray diffraction, H$_2$-temperature programmed reduction, and NO$_x$-temperature programmed desorption. Parallel studies were also carried out with benchmark samples such as CeO$_2$/Al$_2$O$_3$, ZrO$_2$/Al$_2$O$_3$, CeO$_2$-γZrO$_2$/Al$_2$O$_3$ and Pt-supported versions of these materials. All samples were studied in their reduced and nonreduced forms. The use of CO as a probe molecule revealed that during the synthesis of the mixed-metal oxide systems, deposited zirconia preferentially interacted with the alumina hydroxyls, while deposited ceria was preferentially located at the Lewis acid sites. Despite the limited extent of Zr$^{4+}$ ions incorporated into the CeO$_2$ lattice, the reduction of ceria was promoted and occurred at lower temperatures in the presence of zirconia. When deposited on ZrO$_2$/Al$_2$O$_3$, platinum formed relatively big particles and existed in metallic state even in the nonreduced samples. The presence of ceria hindered platinum reduction during calcination and yielded a high platinum dispersion. Subsequent reduction with H$_2$ led to the production of metallic Pt particles. Consequently, NO adsorption on nonreduced Pt-containing materials was negligible but was enhanced on the reduced samples because of Pt0-promoted NO disproportionation. The nature of the nitrogen-oxo species produced after NO and O$_2$ coadsorption on different samples was similar. Despite the high thermal stability of the NO$_x$ adsorbed species on the ceria and zirconia adsorption sites, the NO$_x$ reduction in the presence of H$_2$ was much more facile over Pt/CeO$_2$-γZrO$_2$/Al$_2$O$_3$. Thus, the main differences in the NO$_x$ reduction functionalities of the investigated materials could be related to the ability of the catalysts to activate hydrogen at relatively lower temperatures.

1. INTRODUCTION

One of the most serious environmental problems facing society is the control of atmospheric air pollution consisting of carbon monoxide (CO$_2$), sulfur oxides (SO$_2$), nitrogen oxides (NO$_x$), particulate matter, and unburnt hydrocarbons which are released in significant quantities through exhaust gases from stationary and mobile sources. They have been found to have a serious negative impact on atmosphere, on global ecosystem, and especially on human health. Generation and accumulation of noxious substances in the atmosphere as a result of human activity has necessitated the introduction of stringent emission limits for a number of pollutants, in particular for NO$_x$ and fine particulate matter.

Some of the most prominent DeNO$_x$ technologies that are currently utilized/developed for the control of lean-NO$_x$ emissions from mobile sources are selective catalytic reduction (SCR) of NO$_x$ by urea/ammonia and NO$_x$ storage/reduction (NSR). These two different types of heterogeneous catalytic approaches have different potentials for application depending on the vehicle type and engine size. Among them, urea/ammonia-SCR is a widely commercialized technology for NO$_x$ removal in stationary sources and heavy-duty vehicles.1,2 However, SCR technology which works very effectively for diesel-engine applications suffers from economic/ergonomic penalties associated with the use of a reducing agent (typically urea) that needs to be externally added to the catalytic system. Thus, its adoption to lean-burn engines requires complex exhaust after-treatment systems. NSR technology was first developed by Toyota and does not require an additional reducing agent.3,5 In the NSR technology, NO$_x$ emissions are first trapped in the storage materials of NSR catalysts under

Received: April 4, 2018
Revised: May 22, 2018
Published: May 30, 2018
Table 1. Composition of the Synthesized Samples, Specific Surface Area (S\textsubscript{BET}), and Calculated Parameters via XRD (Pt Average Particle Size, Metal Dispersion) and H\textsubscript{2}-TPR (Total H\textsubscript{2} Consumed)

<table>
<thead>
<tr>
<th>samples</th>
<th>CeO\textsubscript{2} wt %</th>
<th>ZrO\textsubscript{2} wt %</th>
<th>γ-Al\textsubscript{2}O\textsubscript{3} wt %</th>
<th>Pt wt %</th>
<th>S\textsubscript{BET} m2 g-1</th>
<th>Pt average particle size, nma</th>
<th>MD\textsubscript{Pt} b</th>
<th>H\textsubscript{2}-TPR total H\textsubscript{2} consumed (mol g-1) \times 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-Al\textsubscript{2}O\textsubscript{3}</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr/Al</td>
<td>20</td>
<td>80</td>
<td></td>
<td></td>
<td>179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce/Al</td>
<td>20</td>
<td>80</td>
<td></td>
<td></td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce–Zr/Al</td>
<td>10</td>
<td>10</td>
<td>80</td>
<td></td>
<td>133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt/Ce/Al</td>
<td>20</td>
<td>80</td>
<td>1</td>
<td></td>
<td>133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt/Zr/Al</td>
<td>20</td>
<td>80</td>
<td>1</td>
<td></td>
<td>152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt/Ce–Zr/Al</td>
<td>10</td>
<td>10</td>
<td>80</td>
<td></td>
<td>142</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aAverage Pt particle size values were determined via XRD.
bTo evaluate the noble metal dispersion (MD\textsubscript{Pt}), the relationship between mean Pt particle size and the dispersion was used.

Ceria (CeO\textsubscript{2}) and/or M/ceria—alumina-based materials (M = Pt, Pd, Rh) serve as the key components for a variety of catalytic processes. Examples for such processes include H\textsubscript{2} generation via water–gas shift and/or hydrocarbon steam-reforming reactions, 6 three-way catalysis, 7 NSR catalysis, 8 the performance of (Pt)/CeO\textsubscript{2} based systems are also studied for their low-temperature NO\textsubscript{x} reductions, 9 Zr-doped CeO\textsubscript{2}, which is a consequence of the high oxygen mobility inside the lattice. The reason for the increased mobility lies in the highly defective structure and the lattice strain, which are due to the introduction of the smaller isovalent Zr(IV) cation into the CeO\textsubscript{2} lattice. Zr(IV) has an ionic radius of 0.84 Å, smaller than that of Ce(IV) in the same coordination environment (0.97 Å). 20 Moreover, the Ce\textsubscript{1−x}ZrO\textsubscript{2} mixed oxide is known to have a high NO\textsubscript{x} adsorption capacity due to the various basic centers on its surface. 30

Despite the numerous investigations on DeNO\textsubscript{x} processes carried out with (Pt)/CeO\textsubscript{2}–ZrO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} ternary oxide systems, 28,31,32 discrete effects induced both by ceria and zirconia as well as the influence of their simultaneous presence are still not sufficiently well-known. Thus, the efforts of the current work were focused on (i) detailed characterization of the state and location of the alumina-supported species by using CO as an IR probe molecule and (ii) studying the nature and reduction behavior of the NO\textsubscript{x} species on Pt/CeO\textsubscript{2}–ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} ternary oxide surface by using in situ Fourier transform infrared (FTIR) spectroscopy. The present manuscript reports our recent studies on the Pt/CeO\textsubscript{2}–ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} system and its constituents as components of DeNO\textsubscript{x} catalysts. The Pt/ CeO\textsubscript{2}–ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} system not only is composed of some of the most critical functional components of a typical NSR catalyst (e.g., Pt active sites, CeO\textsubscript{2}–ZrO\textsubscript{2} promoter and Al\textsubscript{2}O\textsubscript{3} support material) but also is quite relevant to other catalytic converter technologies such as three-way catalysts. Thus, currently presented results reveal valuable fundamental information that can find application in different automotive after-treatment technologies. Our aim is to unravel the surface chemistry of these catalytic systems by starting from relatively simple compositions followed by more complicated ones in a gradual fashion. Therefore, we report our results on the interaction of NO\textsubscript{x}, NO, and NO + O\textsubscript{2} with reduced catalysts and also provide data on the stability and reactivity of the surface NO\textsubscript{x} species formed in the presence of H\textsubscript{2}. The results were compared with the data obtained for Pt/CeO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} and Pt/ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} binary oxide benchmark samples. A series of complementary characterization experiments were also carried out, such as specific surface area, X-ray diffraction (XRD), H\textsubscript{2}-temperature programmed reduction (H\textsubscript{2}-TPR), and NO\textsubscript{x}-temperature programmed desorption (NO\textsubscript{x}-TPD) measurements in order to obtain a comprehensive picture on the investigated materials.

2. EXPERIMENTAL SECTION

2.1. Sample Preparation. Commercial γ-alumina (γ-Al\textsubscript{2}O\textsubscript{3}, 200 m2 g-1, SASOL Puralex SBa-200) was used as the primary support material in the synthesis of all of the investigated materials. Ceria and/or zirconia were deposited on γ-alumina lenses and then reduced by bringing agents under rich conditions.

Ceria (CeO\textsubscript{2}) and/or M/ceria—alumina-based materials (M = Pt, Pd, Rh) serve as the key components for a variety of catalytic processes. Examples for such processes include H\textsubscript{2} generation via water–gas shift and/or hydrocarbon steam-reforming reactions, 6 three-way catalysis, 7 NSR catalysis, 8 the performance of (Pt)/CeO\textsubscript{2} based systems are also studied for their low-temperature NO\textsubscript{x} reductions, 9 Zr-doped CeO\textsubscript{2}, which is a consequence of the high oxygen mobility inside the lattice. The reason for the increased mobility lies in the highly defective structure and the lattice strain, which are due to the introduction of the smaller isovalent Zr(IV) cation into the CeO\textsubscript{2} lattice. Zr(IV) has an ionic radius of 0.84 Å, smaller than that of Ce(IV) in the same coordination environment (0.97 Å). 20 Moreover, the Ce\textsubscript{1−x}ZrO\textsubscript{2} mixed oxide is known to have a high NO\textsubscript{x} adsorption capacity due to the various basic centers on its surface. 30

Despite the numerous investigations on DeNO\textsubscript{x} processes carried out with (Pt)/CeO\textsubscript{2}–ZrO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} ternary oxide systems, 28,31,32 discrete effects induced both by ceria and zirconia as well as the influence of their simultaneous presence are still not sufficiently well-known. Thus, the efforts of the current work were focused on (i) detailed characterization of the state and location of the alumina-supported species by using CO as an IR probe molecule and (ii) studying the nature and reduction behavior of the NO\textsubscript{x} species on Pt/CeO\textsubscript{2}–ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} ternary oxide surface by using in situ Fourier transform infrared (FTIR) spectroscopy. The present manuscript reports our recent studies on the Pt/CeO\textsubscript{2}–ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} system and its constituents as components of DeNO\textsubscript{x} catalysts. The Pt/ CeO\textsubscript{2}–ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} system not only is composed of some of the most critical functional components of a typical NSR catalyst (e.g., Pt active sites, CeO\textsubscript{2}–ZrO\textsubscript{2} promoter and Al\textsubscript{2}O\textsubscript{3} support material) but also is quite relevant to other catalytic converter technologies such as three-way catalysts. Thus, currently presented results reveal valuable fundamental information that can find application in different automotive after-treatment technologies. Our aim is to unravel the surface chemistry of these catalytic systems by starting from relatively simple compositions followed by more complicated ones in a gradual fashion. Therefore, we report our results on the interaction of NO\textsubscript{x}, NO, and NO + O\textsubscript{2} with reduced catalysts and also provide data on the stability and reactivity of the surface NO\textsubscript{x} species formed in the presence of H\textsubscript{2}. The results were compared with the data obtained for Pt/CeO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} and Pt/ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} binary oxide benchmark samples. A series of complementary characterization experiments were also carried out, such as specific surface area, X-ray diffraction (XRD), H\textsubscript{2}-temperature programmed reduction (H\textsubscript{2}-TPR), and NO\textsubscript{x}-temperature programmed desorption (NO\textsubscript{x}-TPD) measurements in order to obtain a comprehensive picture on the investigated materials.
by conventional incipient wetness impregnation. For this purpose, appropriate amounts of aqueous solutions of Ce-
(NO₃)₃·6H₂O (Sigma-Aldrich, 99.99%) and/or ZrO(NO₃)₂-
xH₂O (Sigma-Aldrich 99.99%) were used to achieve 20 wt % of
CeO₂ (ZrO₂) or 10 wt % of CeO₂ + 10 wt % of ZrO₂ in the
final product. The precursor solutions were mixed with γ-Al₂O₃
and the slurry was continuously stirred followed by evaporation
at 350 K until the water from the suspension was completely
removed. The resulting solids were then dried and calcined at
873 K for 2 h. These mixed oxide support materials were
further functionalized with addition of platinum. For this
purpose, a Pt precursor solution (Pt(NH₃)₂(NO₂)₂, 3.4 wt % in
dilute ammonium hydroxide, Sigma-Aldrich) was prepared, and
then, the support material was slowly added to the solution
under constant stirring at room temperature (RT). Next, the
slurry was continuously stirred, and the solvent was evaporated
at 350 K. Finally, the products were ground into a
fine powder and calcined at 973 K for 2.5 h. The nominal noble metal loading (1 wt % Pt) was kept constant for all samples. For
convenience, the notations of the different samples as well as
some basic characteristics are summarized in Table 1.

2.2. Characterization Techniques. The Brunauer–Emmett–Teller (BET)-specific surface areas (S_BET, m² g⁻¹)
of the calcined samples were determined by low-temperature
isothermal adsorption–desorption of N₂ using a Micromeritics
TriStar 3000 apparatus. The measurements were performed on
previously degassed samples (573 K for 2 h) using nitrogen
adsorption data within the relative equilibrium pressure interval
of 0.03–0.3 p/PΘ according to the standard 5-point BET
procedure.

The XRD patterns were obtained with a Rigaku diffrac-
tometer, equipped with a Miniflex goniometer and an X-ray
source with Cu Kα radiation, at λ = 1.5418 Å, 30 kV, and 15
mA. Diffraction patterns of the samples were recorded in 2θ
range between 10 and 80° with a step size of 0.01° s⁻¹. The patterns were assigned using Joint Committee on Powder
Diffraction Standards (JCPDS) cards supplied by the Interna-
tional Centre for Diffraction Database (ICDD). To evaluate
the surface metal dispersion (MD_Pt) of the Pt catalysts, the
relationship between the mean Pt particle size (dp) and
dispersion was used. Thus, the MD was estimated according
to eq 1 as follows

\[MD_{Pt} = 6 \left(\frac{v_m}{a_{200}}\right) \frac{1}{d_{Pt}} \]

(1)

where the volume v_m occupied by an atom Pt in the bulk of
gold is given by the equation: v_m = M/ρN_A where M is the
atomic mass of Pt, ρ the mass density, and N_A Avogadro’s
number. In the case of platinum (M = 195.08 g mol⁻¹, ρ =
21.45 g cm⁻³), v_m = 15.10 Å³. The surface area a_{2θ} occupied by
an atom Pt on a polycrystalline surface is 8.07 Å².

The specimens for transmission electron microscopy (TEM)
were prepared by ultrasonically suspending the finely ground
sample particles in ethanol and by dispersing this suspension on
a standard carbon film-coated copper TEM grid. TEM
measurements were carried out in bright field mode using a
TEM JEOL 2100 microscope, equipped with a charge-coupled
device camera Gatan ORIUS 1000. The operating voltage of
the microscope was 200 kV during TEM imaging.

H₂-TPR experiments were performed in a conventional semi-
automatic analyzer (ChemBET TPR/TPD, Quantachrome
Instruments) consisting of a vertical quartz U-tube reactor
mounted in an electric furnace and connected to a thermal
conductivity detector (TCD) measuring the hydrogen
consumption. In each experiment, the sample loaded in the
quartz reactor (ca. 0.1 g powder with an average particle size
within 0.4–0.25 mm) was exposed to 20 mL min⁻¹ 5% H₂ +
95% He (v/v) gas flow and heated from RT to 1273 K with a
heating rate of 10 K min⁻¹. The changes in the H₂
concentration were monitored by an online TCD connected
directly to the exit of the reactor. A cooling trap placed between
the sample and the detector retained the water formed during
the reduction process. The H₂-TPR curves were used to
calculate the total amount of H₂ consumed during the
deruction. TCD was calibrated by injections of a known
volume of pure H₂ through the analyzer septum using a syringe.

NOₓ-TPD experiments were performed by using a quadru-
pole mass spectrometer (QMS, SRS RGA200) that is directly
connected to the custom-designed TPD-in situ FTIR
spectroscopic system. In the TPD experiments, the sample
(ca. 20 mg of finely ground powder) was pressed onto a high
transmittance lithographically etched fine-tungsten grid which
was mounted on a copper sample holder assembly that is
attached to a ceramic vacuum feedthrough. A K-type
thermocouple was spot-welded to the surface of a thin tantulum
plate attached to the W-grid to monitor the sample
temperature. The sample temperature was controlled within
298–1100 K via a computer-controlled dc resistive heating
system using the voltage feedback from the thermocouple. To
minimize the effect of NO oxidation/adsorption/disproportion-
ating on Pt which could affect the total amount of NOₓ
adsorbed species, the NOₓ storage ability tests over Pt samples
were thus performed by using of NOₓ as the adsorbent. Prior to
each experiment, to obtain a surface that is free of adsorbed
NOₓ and other adsorbates (such as carbonates), the sample was
heated to 1023 K in vacuum with a constant rate of 12 K min⁻¹
and, after cooling to 323 K, NOₓ storage experiments were
performed. Before the NOₓ-TPD experiments, the samples
were exposed to 5 Torr of NOₓ for 10 min until equilibrium
was reached. After this exposure/saturation step, the sample
was outgassed to ~10⁻⁷ Torr to remove weakly adsorbed
(physisorbed) NOₓ species, and subsequently, a TPD analysis
was carried out to 973 K with a heating rate of 12 K min⁻¹. The
contents of N₂, NO, O₂, N₂O, and NOₓ in the desorbing gas
mixture were monitored online by following the desorption
signals corresponding to the mass-to-charge ratio (m/z) values
of 28, 30, 32, 44, and 46, respectively. The NOₓ adsorption
ability of the catalysts was estimated by calculating the
total integrated areas under NOₓ-related desorption features in
the TPD profiles after considering fragmentation patterns of all of
the major NOₓ adsorption species (i.e., NOₓ, NO, N₂O, and
N₂O). Thus, to normalize the data, the intensity of the signals
for each gas was corrected by a factor using the standard mass
spectroscopic fragmentation databases of the National Institute
of Standards and Technology (NIST) (see Supporting
Information).³⁴

FTIR spectroscopic measurements were carried out in a
transmission mode using Nicolet Avatar 6700 FTIR
spectrometer, equipped with a Hg–Cd–Te (MCT) detector. The
experiments were performed in a batch-type IR cell equipped
with optically polished CaF₂ windows allowing data acquisition
at low (100 K) and ambient temperatures. The cell was directly
connected to a vacuum-adsorption apparatus (Pfeiffer vacuum
turbo molecular/rotary pumps) with a residual pressure lower than 1 × 10⁻⁶ Torr.
For the FTIR experiments, self-supporting pellets (ca. 10 mg cm$^{-2}$) were used. They were prepared by pressing the sample powders at a pressure of \sim5 ton cm$^{-2}$, applied for 1–2 min. Then, the pellets were placed inside the IR cell using a custom-made movable sample holder that allows insertion of the sample in the middle of the heated zone of the IR cell. Thus, the spectra were registered in situ after each thermal treatment of the sample at different temperatures and atmospheres. Each FTIR spectrum was acquired within the 4000–800 cm$^{-1}$ spectral region by accumulating up to 64 scans at a spectral resolution of 2 cm$^{-1}$ and accuracy of 0.01 cm$^{-1}$. The background and gas-phase corrections were performed using OMNIC software.

The samples were analyzed in activated and reduced forms. The activation was performed by heating the self-supporting pellets at 673 K in air for 1 h with a subsequent evacuation at the same temperature to a residual pressure \sim2.2 \times 10$^{-6}$ Torr. The reduced forms were obtained by heating the pellets at 723 K in 22.5 Torr H$_2$ for 1 h followed by evacuation at 673 K to a residual pressure around 2.2 \times 10$^{-6}$ Torr.

FTIR investigations were performed before and after adsorption of different gases on the catalyst surfaces either at RT or at low temperature (100 K). Carbon monoxide/nitrogen monoxide (CO, NO, >99.9% pure) were supplied by Messer. Prior to the experiments, CO, O$_2$, and H$_2$ were purified by passing through a liquid nitrogen trap while NO was additionally purified by fractional distillation.

3. RESULTS AND DISCUSSION

3.1. Preliminary Structural Characterization: S_{BET} Surface Area and XRD. The BET specific surface areas (S_{BET}) of Pt-free Ce/Al, Zr/Al, and Ce–Zr/Al samples were found to vary between 160 and 180 m2 g$^{-1}$ (see Table 1). This is about 10–20% lower compared with pure γ-Al$_2$O$_3$ (200 m2 g$^{-1}$) which was used as the primary support material in the synthesis. It is seen that the effect of ceria on the S_{BET} decrease is more pronounced. Deposition of Pt leads to an additional decrease in S_{BET} by 15–18%. All these effects are associated with partial blocking of the γ-Al$_2$O$_3$ pore structure by oxide- and Pt-containing crystallites.

XRD patterns of the samples are shown in Figure 1A. XRD patterns of all Pt-free samples (b–d) exhibit typically broad diffraction peaks at $2\theta = 47.5^\circ$ and 66.3$^\circ$ because of γ-Al$_2$O$_3$ (a). In the XRD patterns of the Ce/Al sample (b), additional intense reflections at $2\theta = 28.5^\circ$, 33.1$^\circ$, 47.6$^\circ$, and 56.3$^\circ$ are also seen. They are characteristic of the fluorite structure of CeO$_2$ (JCPDS 00-04593). XRD pattern of the Ce–Zr/Al sample (c) also contains the features of CeO$_2$, although with lowered intensity, as expected. Reflections related to the presence of ZrO$_2$ were not clearly detectable in the XRD profiles of both Ce–Zr/Al (c) and Zr/Al (d) samples. Very poorly defined features at $2\theta \approx 61^\circ$ could be tentatively attributed to the presence of t-ZrO$_2$ (JCPDS 80-2155). This may suggest that in both Zr-containing materials, zirconia exists as a disordered oxide, amorphous mixed oxide, and/or a highly dispersed oxide phase with small particulate size and thus cannot be detected with XRD.

A more detailed analysis of the XRD data (see the Supporting Information, Figure S1) showed a slight shift and broadening of the main diffraction peak of Ce(111) at $2\theta = 28.7^\circ$ in the XRD pattern of the Ce–Zr/Al sample with respect to the Ce/Al system. Usually, the shift of the Ce(111) diffraction signal to higher values is indicative of lattice contraction resulting from the substitution of Ce$^{4+}$ (\sim0.097 nm) by the smaller Zr$^{4+}$ (\sim0.084 nm) ions due to the formation of a CeO$_2$–ZrO$_2$ solid solution.$^{35-38}$ However, current results (Figure S1) show that the corresponding shift of the Ce(111) diffraction signal in the Ce–Zr/Al mixed ternary oxide sample is very small. This indicates a limited extent of Zr$^{4+}$ ion incorporation into the ceria lattice.

It is seen in Figure 1A that all of the Pt-containing samples (patterns e–g) show an additional peak at $2\theta = 39.7^\circ$, which can be assigned to metallic Pt (JCPDS 00-0802). The other Pt peaks ($2\theta = 46.1^\circ$ and 67.4$^\circ$) are masked by the strong features of alumina.

It is also evident that a significant amount of metal platinum species exists on the Pt/Zr/Al sample while the amount of metallic platinum is much lower on the Pt/Ce/Al sample (the Pt/Ce–Zr/Al sample holds intermediate positions). The major diffraction signal of Pt(111) at $2\theta = 39.7^\circ$ can be utilized to calculate the average Pt particle size using the Scherrer equation.39 Pt average particle size on Pt/Ce/Al, Pt/Ce–Zr/Al, and Pt/Zr/Al were found to be 24, 29, and \sim37 nm, respectively. The noble metal surface dispersion (MD$_{Pt}$) on Pt/Ce/Al, Pt/Ce–Zr/Al, and Pt/Zr/Al were found to be 0.46, 0.38, and 0.3, respectively.

Representative bright-field TEM images of the Pt/Ce–Zr/Al, Pt/Ce/Al, and Pt/Zr/Al catalysts are shown in Figure S2 (Supporting Information). The imaging revealed morphology with a complex of features with poorly defined lighter and more ordered darker areas, showing that the material presents a relatively inhomogeneous Pt particle distribution. The crystal-line areas which usually appear darker than the amorphous was indicative for the presence of both well-dispersed smaller Pt particles with a range of \sim15–20 nm in size and also some crystallites that are more aggregated with sizes of \sim40–50 nm.

3.2. H$_2$-TPR. The redox behavior of the catalysts was studied by H$_2$-TPR (Figure 2). The total H$_2$ consumed during the TPR is presented in Table 1. Reduction of the Ce/Al sample resulted in the appearance of two major features in the TPR profile (curve a): a low-temperature peak at ca. 826 K and an additional strong asymmetric TPR signal with a maximum at ca. 1192 K. In addition, weak and broad features at \sim996 and \sim1042 K are also discernible.
suggest a decreased extent of ceria interaction with alumina domains. This considerably decreases the total amount of H$_2$ consumed during the reduction, as presented in Table 1.

Influence of Pt incorporation on the redox functionalities of the synthesized mixed oxide systems can also be inferred from Figure 2. TPR profiles of Pt/Ce/Al and Pt/Ce–Zr/Al catalysts (Figure 2, profiles d and e) indicate that as in the case of Pt-free Ce/Al and Ce–Zr/Al samples, they also contain TPR features at ~996, 1042, and 1193 K. However, Pt/Ce/Al and Pt/Ce–Zr/Al TPR profiles (Figure 2d,e) exhibit three additional reduction signals. For the Pt/Ce–Zr/Al sample (profile e), they appear as a shoulder at ~471 K, a strong asymmetric peak at ca. 545 K, and an additional reduction feature at ca. 688 K. For the Pt/Ce/Al sample, these features are slightly shifted to lower temperatures by ca. 10 K.

The well-known promotional effect of noble metals (e.g., Pt, Rh, and Pd) leading to a decrease in the ceria reduction temperature has been thoroughly discussed in the literature. It is generally adopted that two different types of ceria domains exist in noble metal-promoted ceria systems. The first one is in the form of a well-dispersed CeO$_2$ domain, where Pt species are preferably located. Consequently, on these domains, Pt sites are located in close proximity of the Ce$^{4+}$ ions and interact strongly with them. In the second type of ceria domains, ceria is far from the noble metal particles and exist on the surface as segregated CeO$_2$ crystallites. Thus, the presence of Pt may significantly alter the surface morphology of ceria leading to lowering of the reduction temperature and splitting of the reduction process into two different temperature regions. The low-temperature region is associated with reduction of the Pt oxide phase and Ce$^{4+}$ ions of the well-dispersed CeO$_2$ surface species in the vicinity of the Pt sites. In contrast, reduction of segregated CeO$_2$ domains positioned far from the noble metal sites occurs at higher temperatures. Indeed, it is known that noble metals supported on ceria, when reduced, may undergo a change in the metal–support interface because of the strong metal–support interaction (SMSI) effect. It was found that such a type of interaction may lead to alloy formation between Pt and Ce, decoration or encapsulation of Pt by partially reduced ceria, and/or structural reorganization of ceria–zirconia.

On the basis of previous studies, the TPR data of the Pt-containing samples presented in Figure 2 can readily be interpreted as follows: the most prominent TPR signal in Figure 2e (Pt/Ce–Zr/Al) with a maximum at ~545 K and the shoulder at ~471 K can be assigned to the reduction of the Pt oxide phase and surface Ce$^{4+}$ ions closely interacting with the noble metal particles, while the feature at ca. 688 K can be associated with the reduction of surface ceria species that are far from Pt sites. Slightly higher reduction temperatures and lower TPR signal intensities for Pt/Ce–Zr/Al (Figure 2e) as compared to Pt/Ce/Al (Figure 2d) can be attributed to the slightly higher Pt crystallinity and lower Pt dispersion (0.38) on Pt/Ce–Zr/Al. The amount of H$_2$ consumed for the Pt/Ce–Zr/Al sample is near 7.1×10^{-3} mol g$_{cat}$$^{-1}$ at 545 K and 4.6 $\times 10^{-3}$ mol g$_{cat}$$^{-1}$ at 688 K, respectively. While the consumed H$_2$ for the Pt/Ce/Al was estimated near 9.6 $\times 10^{-3}$ mol g$_{cat}$$^{-1}$ at 545 K and 6.8 $\times 10^{-3}$ mol g$_{cat}$$^{-1}$ at 688 K, respectively. This is consistent with the relatively lower ceria content of the Pt/Ce–Zr/Al sample limiting Pt dispersion, as shown by XRD (Figure 1B). The situation with the Pt/Zr/Al sample is different (Figure 2f). In this case the peak at ca. 769 K could be associated with reduction of residual ionic platinum species.
The relatively high reduction temperature could be associated with particular stabilization of these species and the lack of promotional effect of ceria.

3.3. In Situ FTIR Spectroscopic Adsorption Studies.

3.3.1. Background FTIR Spectra. The FTIR spectra of the activated and reduced samples in the hydroxyl stretching region are presented in Figure 3. The spectrum of γ-Al2O3 (a) is consistent with literature reports and contains three well-resolved bands with maxima at 3769, 3729, and 3680 cm⁻¹. These bands can be assigned on the basis of recent reviews. The most prominent band at 3729 cm⁻¹ is assigned to hydroxyls bound with a bridging configuration to two Al³⁺ sites having an octahedral coordination (type-IIa hydroxyl), while the band at 3680 cm⁻¹ is attributed to OH groups bound to three octahedrally coordinated Al³⁺ sites (type-III hydroxyl). The band at 3769 cm⁻¹ is associated with the terminal OH groups (type-la hydroxyl) on the single tetrahedrally coordinated Al³⁺ sites that can exist on two different crystallographic orientations (i.e., (111) and (110)) of the γ-Al2O3 surface. In addition, a shoulder at ~3790 cm⁻¹ and a broad band around 3593 cm⁻¹ are also visible. The feature at ~3790 cm⁻¹ is attributed to the presence of hydroxyls bound to a single octahedrally coordinated Al³⁺ sites (type-Ib hydroxyl), while the broad feature at ~3593 cm⁻¹ characterizes H-bonded hydroxyls.

The hydroxyl spectra of the other samples (b–f) are similar to the spectrum of alumina (a), which is the main component in all materials. The IR spectra of the Pt-free mixed oxide supports (not shown) were similar to that of alumina, albeit revealing lower IR signal intensities, where IR intensities decreased in the following order Ce/Al > Zr/Al > Ce

3.3.2. CO Adsorption at Low Temperature (100 K). Carbon monoxide is one of the most commonly used IR probe molecules and gives information on the existence and state of different surface acid and metallic sites. Figure 4 presents the FTIR spectra in the ν(C–O) stretching region registered after low-temperature adsorption of CO (2.25 Torr CO equilibrium pressure) on pure γ-Al2O3 (used as a reference) and on activated and reduced forms of the Pt-containing samples. The spectra of the Pt-containing samples (activated/reduced) (Figure 3, spectra b–f) reveal very similar IR features as compared to that of alumina. In other words, the hydroxyl stretching region of the IR spectra of all Pt-containing samples seem to be hardly sensitive to Ce and/or Zr incorporation as well as pretreatment steps (activation/reduction) used in the current work. It can also be seen that the band at 3769 cm⁻¹ in the spectrum of γ-Al2O3 (a) is shifted toward lower frequencies at 3755 cm⁻¹ in the spectra of the Pt samples. These results indicate that during Pt deposition part of the hydroxyl groups of the support (those characterized by a band at 3769 cm⁻¹) have reacted with the deposited species.

Note that IR spectroscopy is a very efficient technique to follow the degree of ceria reduction. The forbidden 2F5/2–2F7/2 electronic transition of Ce³⁺ ions is observed in the IR region at ca. 2124 cm⁻¹, and this band can be associated with the presence of oxygen vacancies. The spectra presented in Figure 3 [inset, spectra (c,e)] clearly indicate the existence of Ce³⁺ species on the reduced Pt/Ce/Al and Pt/ Ce–Zr/Al samples.

Adsorption of CO on γ-Al2O3 at 100 K leads to the appearance of two main IR bands: Al³⁺–CO at 2187 cm⁻¹ and OH–CO at 2157 cm⁻¹ (Figure 4, spectrum a). The same bands were also detected on the Pt-free Ce/Al, Zr/Al, and Ce–Zr/Al supports (not shown) and the Pt-containing samples (Figure 6, spectra a–c), although with different intensities.
Scheme 1. Schematic Representation of the Preferential Location of Ceria and Zirconia Species on γ-Alumina

With the Pt-containing samples which were initially activated by calcination, all of the carbonyl bands formed after CO adsorption at 100 K disappeared after evacuation (data not shown) indicating weak adsorption. This also implies the absence of PtII−CO species which are known to demonstrate high stability. Therefore, on the activated samples, supported PtII sites were either coordinatively saturated or inaccessible.

The relative intensities of AlIII−CO (2187 cm$^{-1}$) and OH−CO (2156 cm$^{-1}$) bands obtained after CO adsorption can also yield valuable insights regarding the interaction of ceria, zirconia and ceria−zirconia domains on alumina and its hydroxyls. Note that CO extinction coefficient for carbonyls without back π-donation hardly depends on the stretching frequency. Therefore, it can be argued that a relatively high \(I_{2157 cm^{-1}}/I_{2157 cm^{-1}} \) intensity ratio points out the extensive presence of available hydroxyl groups that can interact with the CO probe molecule and relative scarcity of available AlIII sites that can coordinate CO. Along these lines, it can be suggested that on the Pt/CE−Zr/Al and Pt/Ce/Al samples, ceria has preferentially interacted with the alumina Lewis acid (AlIII) sites, whereas on the Pt/Zr/Al sample, zirconia mainly affected the hydroxyl coverage (Scheme 1). The same conclusions are supported when analyzing the hydroxyl spectra of the samples (Figure 3). On the Pt/CE−Zr/Al surface both AlIII−CO and OH−CO reveal attenuated intensities signifying a high dispersion of ceria and zirconia domains strongly interacting with alumina support.

With the Ce-containing materials (Pt/Ce/Al and Pt/Ce−Zr/Al, spectra d,f) a new carbonyl band is detected at 2178 cm$^{-1}$ (Figure 4, spectra d,f). This band is attributed to CeIV−CO species. Indeed, it diminishes after the reduction of CeIV ions to CeIII (Figure 4, spectra e,g), which is in line with the proposed assignment.

Finally, a weak feature around 2099 cm$^{-1}$ was observed with the Pt/Zr/Al sample (Figure 4, spectrum b) and will be discussed below.

Adsorption of CO on reduced Pt-containing samples (Figure 4, spectra c,e,g) results in the formation of PtII−CO species as evident by the appearance of IR features within the 2100−2050 cm$^{-1}$ region. These bands are also shown in more detail in the inset of Figure 4.

The highest intensity of the platinum−carbonyl band was registered with the Pt/CE/Al sample (Figure 4, spectrum e). The maximum of the band is at 2072 cm$^{-1}$, but a tail toward lower frequencies is detected (Figure 4, spectrum e). The 2072 cm$^{-1}$ band is attributed to Pt−CO species and its relatively higher intensity indicates a high Pt dispersion. It is well-known that \(\nu \) (CO) frequency is sensitive to the Pt coordination and shifts to lower frequencies when the Pt coordination decreases. In particular, we assign the band at 2086 cm$^{-1}$ to CO adsorption on terrace sites of the Pt(111) surface of large platinum crystallites, while the feature at \(\sim 2060 \) cm$^{-1}$ is mainly due to CO adsorbed on the (111) facets of smaller Pt nanoparticles. The small feature at around 2099 cm$^{-1}$ is ascribed to the CO species on-top at Pt(111) at high CO coverage.

On the Pt/Ce−Zr/Al sample (Figure 4, spectrum g), the band at 2086 cm$^{-1}$ is less intense as compared to the case of the Pt/CE/Al sample. This suggests either a low Pt dispersion (confirmed by the high CO stretching frequency) and/or covering of the Pt sites by the reducible oxide domains (e.g., ceria) exhibiting a dynamic surface morphology which is also known as the SSMI effect. Clear evidence that this could influence the adsorptive properties of Pt species can be seen from the IR spectra of CO adsorption. The strong interaction of Pt oxide phase with CeIV ions into the Ce-containing systems decreases the platinum and ceria reduction temperature. Thus, the adsorption of CO on the noble metal sites is much more pronounced. On the other hand, the intensity of the platinum−carbonyl band with the Pt/Zr/Al sample is very low. This, together with the high CO stretching frequency, indicates low Pt dispersion. Note that with this sample some metallic Pt sites were detected also with the activated sample and reduction has only resulted in the increase in the amount of the metallic species. As a conclusion, CO adsorption experiments reveal that for the reduced samples, the highest Pt dispersion is achieved on the Pt/CE/Al.

3.3.3. Interaction of the Samples with NO at Ambient Temperature. In these experiments, small doses of NO were successively introduced onto the samples at ambient temperature (293 K) and the evolution of the adsorbed species on activated and pre-reduced Pt/CE−Zr/Al, Pt/Ce/Al and Pt/Zr/Al samples were followed by in situ FTIR spectroscopy (Figure 5). NO adsorption on the activated Pt/CE/Al sample is

![Figure 5. FTIR spectra in the ν(N−O) stretching region of NO adsorbed (3.75 Torr NO equilibrium pressure) at RT on activated and reduced Pt/Ce−Zr/Al, Pt/Ce/Al, and Pt/Zr/Al samples. Evolution of the spectra during gradual adsorption of small doses of NO (spectra a−e) and NO adsorbed on the reduced and activated samples at 3.75 Torr NO equilibrium pressure (spectra f and f'). The spectra are background- and NO gas-phase-corrected.](image-url)
negligible and leads to modest changes in the FTIR spectrum (Figure 5, spectrum f). Several weak bands (at 1915, 1863, 1235, and 1175 cm\(^{-1}\)) are observed in the spectra. The band at 1915 cm\(^{-1}\) can be attributed to Pt\(^{x+}\)–NO species, whereas the band at 1863 cm\(^{-1}\) is most probably associated with N\(_2\)O\(_3\) formation.\(^{64}\) In contrast, NO adsorption is much more pronounced on the reduced sample (Figure 5, spectra a–f). Immediately after the first NO dose, a strong band at 1778 cm\(^{-1}\) appears. This band is attributed to Pt\(^{0}\)–NO species.\(^{62}\) With increasing NO exposure, two bands, at 2250 and 1912 cm\(^{-1}\), became visible. They can be assigned to adsorbed N\(_2\)O and Pt\(^{0}\)–NO species, respectively.\(^{62,65}\) The adsorption of NO on the reduced Pt samples reveals the existence of cationic (Pt\(^{x+}\)) and metallic platinum. No Pt\(^{6+}\) species were detected when CO was used as a probe molecule, suggesting that Pt\(^{6+}\) sites were either formed as a result of oxidation of surface Pt\(^{6+}\) sites by NO or the existing Pt\(^{6+}\) sites were reduced by CO. Furthermore, the band at 1711 cm\(^{-1}\) also grows in intensity along with the band at 1912 cm\(^{-1}\). Therefore, it could be attributed to Pt\(^{0}\)–NO complexes affected by the Pt\(^{6+}\)–NO species. In addition, vibrational features at 1212 and 1165 cm\(^{-1}\) can be assigned to nitrite species.\(^{61}\)

Additional support for the assignment was obtained by analyzing the spectra of adsorbed \(^{15}\)NO and \(^{14}\)NO \(+\) \(^{15}\)NO (see Supporting Information, Figure S3). The isotopic red shift factor observed for the N\(_2\)O species was 1.033 which coincides with the expected theoretical factor for N–N bond vibrations.\(^{61}\) Isotopic red shift factors observed for other adsorbed NO\(_x\) species range between 1.019 and 1.022 verifying that they are due to N–O bonds (see Supporting Information, Table S1). Note that the appearance of nitrate bands located at 1212 and 1165 cm\(^{-1}\) on the reduced Pt/\(\text{Ce/Al}\) sample is at first sight surprising because nitrites are products of NO oxidation. However, it seems that these species are formed as a result of NO disproportionation catalyzed by metallic platinum. Indeed, N\(_2\)O (2250 cm\(^{-1}\)) was also detected as a reaction product of such a disproportionation process.

The Pt/\(\text{Zr/Al}\) sample (Figure 5) shows important differences as compared to Pt/\(\text{Ce/Al}\). Relatively intense bands are observed after NO adsorption on the activated Pt/\(\text{Zr/Al}\) (Figure 5, spectrum f). Briefly, the bands at 1231 and 1185 cm\(^{-1}\) are attributed to nitrates, whereas the other bands in the 1600–1200 cm\(^{-1}\) region are attributed to nitrites and possibly nitro species.\(^{61}\) A weak feature around 1720 cm\(^{-1}\) is attributed to Pt\(^{0}\)–NO species. The spectra corresponding to NO adsorption on the reduced Pt/\(\text{Zr/Al}\) sample resembles those of the activated sample, exhibiting slightly higher IR intensities. These results are consistent with the above-made conclusion on the presence of large metallic platinum particles on both reduced and oxidized Pt/\(\text{Zr/Al}\) samples, leading to NO disproportionation. The platinum–nitrosoyl band with the Pt/\(\text{Zr/Al}\) sample has very low intensity compared with that of the Ce-containing samples. This can also be explained considering the promotional effect of the Pt and ceria interaction which enhances the adsorption of NO on noble metal sites. These results are consistent with the conclusion on the presence of large metallic Pt particles on both reduced/oxidized Pt/\(\text{Zr/Al}\) samples, leading to NO disproportionation. Therefore, we assign the band at 1720 cm\(^{-1}\) to NO on relatively large Pt particles.

For the Pt/\(\text{Ce/–Zr/Al}\) sample (Figure 5), NO adsorption on the activated material is negligible (as with the Pt/\(\text{Ce/Al}\) sample), but reduction leads to the appearance of Pt\(^{0}\)–NO bands at 1778 and 1711 cm\(^{-1}\) and appearance of nitrate/nitrite bands at 1570, 1225, and 1185 cm\(^{-1}\). In addition, N\(_2\)O was also formed and its amount was higher than that of the Pt/\(\text{Ce/Al}\) sample (the band at 2250 cm\(^{-1}\)).

3.3.4. Coadsorption of NO and O\(_2\) at Ambient Temperature.

The nature of the adsorbed NO\(_x\) species was also studied upon coadsorption of NO and O\(_2\). First, NO (ca. 3.75 Torr equilibrium pressure) was introduced at ambient temperature into the IR cell. Then, small doses of O\(_2\) were successively added to the system to increase oxygen formal partial pressure up to 6 Torr. Figure 6 represents the evolution of the FTIR spectra in the \(\nu(N–O)\) stretching region of NO + O\(_2\) coadsorbed (0.5 kPa NO and 0.8 kPa Pa O\(_2\) equilibrium pressure) at RT on activated Pt/\(\text{Ce/–Zr/Al}\) sample. Evolution of the spectra during gradual adsorption of small doses of O\(_2\) (spectra a–n) and NO + O\(_2\) coadsorbed on the sample surface (spectrum o) at 3.75 Torr NO and 6 Torr O\(_2\) equilibrium pressure. The insets of the figure show the spectral changes in the \(\nu(O–H)\) stretching region and in the region of overtones of nitrates and nitrites. All spectra are background- and NO gas-phase-corrected.

![Figure 6](https://example.com/figure6.png)

Figure 6. FTIR spectra in the \(\nu(N–O)\) stretching region of NO + O\(_2\) coadsorbed (0.5 kPa NO and 0.8 kPa Pa O\(_2\) equilibrium pressure) at RT on activated Pt/\(\text{Ce/–Zr/Al}\) sample. Evolution of the spectra during gradual adsorption of small doses of O\(_2\) (spectra a–n) and NO + O\(_2\) coadsorbed on the sample surface (spectrum o) at 3.75 Torr NO and 6 Torr O\(_2\) equilibrium pressure. The insets of the figure show the spectral changes in the \(\nu(O–H)\) stretching region and in the region of overtones of nitrates and nitrites (2700–2450 cm\(^{-1}\)), respectively.

As observed in Figure 6, the introduction of the first small doses of O\(_2\) leads to the appearance of several bands at 1613, 1591, 1464, 1319, 1226, and 1075 cm\(^{-1}\) and shoulders at \(\sim\)1220, 1569, and 1621 cm\(^{-1}\). With further increase of the O\(_2\) doses, all bands increase in intensity. However, the bands at 1464, 1319, 1226, and 1075 cm\(^{-1}\) reach maximal intensities and then start to decline (Figure 6, spectrum h). In contrast, bands at 1650–1550, 1300–1250, and 1040 cm\(^{-1}\) (some of them not initially observed) continue growing. Concomitant to these spectral changes, the process of NO + O\(_2\) adsorption is accompanied by the appearance of three negative bands located in the \(\nu(OH)\) stretching region (the inset of Figure 6) at 3770, 3756, and 3730 cm\(^{-1}\) and a new broad band at 3541 cm\(^{-1}\) develops. A comparative analysis of the IR spectra depicted in Figure 6, clearly shows their significant resemblances with the NO\(_x\) vibrational features reported in the former studies.\(^{63,64,66}\)
focused on the FTIR spectroscopy preformed upon NO₃ adsorption on pure γ-Al₂O₃. Thus, our results can be interpreted in the light of these numerous former studies in the literature as follows: at first, the introduction of small doses of O₂ into the NO−Pt/Ce−Zr/Al system leads to an initial increase in the concentration of the surface nitro/nitrito compounds. This is evidenced by the appearance of the bands at 1464, 1319, 1226, and 1075 cm⁻¹. With increasing oxygen pressure, nitrites are oxidized to nitrates. The later process can be seen with the presence of an isosbestic point at ~1227 cm⁻¹, between the band at 1267 cm⁻¹ (characterizing a vibration of bridged nitrates), and the one at 1226 cm⁻¹ (indicating the presence of nitrito compounds). Thus, the bands at 1226 and 1319 cm⁻¹ were assigned to originate from the ν₃ and ν₅ of bridging nitrates, respectively. The bands at 1464 and 1075 cm⁻¹ correspond to the ν(N=O) and ν(N−O) modes, respectively, of nonsymmetric nitrates bound more strongly to the surface via one of the oxygen atoms.

Increasing the amount of O₂ introduced enhances the intensities of the nitrate-related IR bands at the expense of the nitrite features. Thus, in the spectrum acquired under NO + O₂ equilibrium pressure (spectrum a) the most intense features are the ones of nitrates. The observed bands (split ν₅ modes around 1600 and 1300 cm⁻¹) were assigned to the formation of different kinds of nitrates (bridged/bidentate).61,64,66

These arguments are further supported by the analysis of the NO₃ overtone and combination modes. At low oxygen exposures, a band at 2528 cm⁻¹ is detected which is typical of nitrites. Then, various bands at higher frequencies (2580–2640 cm⁻¹) start to develop due to bidentate (1613, 1621, 1299 and 1591 cm⁻¹) and monodentate (1569 and 1299 cm⁻¹) nitrates. At least part of these nitrates is in vicinity of the alumina OH groups thus affecting the hydroxyl spectra.

To determine the nature of the adsorbed NO₃ species, we have carried out complementary NO + O₂ absorption experiments also with the Pt/Ce/Al and Pt/Zr/Al samples (Figure S4 “Supporting Information”). Coadsorption experiments were also performed in an identical manner to that of the Pt/Ce−Zr/Al sample. The analysis of the FTIR spectra corresponding to the reference binary mixed oxide Pt-systems did not show any significant differences in the position and/or intensity of the IR bands. No evidence for the presence of bands due to different NO₃ species bonded to ceria or zirconia active sites was found. This was explained by the fact that the characteristic bands identifying the nitrito/nitroato (NO₂⁻/-/NO₃⁻) species on the different adsorption sites appear in the spectral region where the bands are overlapping. Co-adsorption of NO and O₂ on oxide surfaces may lead to the simultaneous formation of nitrito/nitroato complexes coordinated to the different cationic sites (Al³⁺, Ce⁴⁺, and Zr⁴⁺). Thus, this makes the spectral differentiation between them very difficult and likely impossible.

To investigate the thermal stability of the adsorbed NO₃ species, we have also carried out experiments in which the samples with the preadsorbed NO + O₂ were evacuated at different temperatures (Figure S5, “Supporting Information”). The results also did not show any important spectral differences that can be used to discriminate the relative thermal stabilities of adsorbed species on different adsorption sites. With increasing evacuation temperature up to 673 K, all bands decrease in intensity. However, in contrast to the Pt/Zr/Al system, the intensity of the nitrate bands in the spectra of Pt/Ce−Zr/Al and Pt/Ce/Al samples strongly diminished after 623 K evacuation (Figure S5) and they disappeared almost completely upon evacuation at 673 K.

3.4. NOₓ-TPD. Further information regarding the structure and morphology of the Pt-containing catalysts was acquired from the NOₓ-TPD analysis carried out in the range of 298–1100 K. The evolution of the total NOₓ (NO + NO₂) concentration as a function of temperature during the TPD is presented in Figure 7A. The N₂O and O₂ desorption profiles during the thermal NOₓ decomposition are also shown in Figure 7B,C, respectively. The NOₓ-TPD curves obtained experimentally were deconvoluted into four peaks (as presented in Figure 7) using a Gaussian curve-fitting method. The obtained area under the fitted peaks was used to compare the different NOₓ adsorption contribution of the components in ternary/binary oxide systems. The results are presented in Table 2.

As it can be seen (Figure 7A), in the TPD profile of the Pt/Ce−Zr/Al sample (b), the decomposition of the surface nitrogen-oxide species initially resulted in an evolution of small amounts of NOₓ in the low-temperature region with a maximum at ca. 390 K. The obtained fitted peak showed that...
The TPD profile (a) corresponding to the Pt/Ce/Al sample showed very similar NO\textsubscript{x} desorption features. However, in contrast to the Pt/Ce–Zr/Al catalyst, the NO\textsubscript{x} release was observed to occur with the evolution of more strongly pronounced NO\textsubscript{x} desorption signal at ca. 507 K, while the intensity of the feature at ∼701 K is visibly suppressed. This can also be clearly seen from the calculated parameters, presented in Table 2. The TPD of the Pt/Zr/Al sample (profile c) presents also four NO\textsubscript{x} desorption features. The first very minor peak was detected at ca. 390 K while the second major signal was registered as a broad and strongly asymmetric NO\textsubscript{x} desorption feature with several maxima at ca. 507, 612 and 701 K. In addition, it can also be seen in Figure 7B,C that NO\textsubscript{x} decomposition is also accompanied by the production of small quantities of N\textsubscript{2}O and O\textsubscript{2} with concentration profiles following a similar trend to that observed for the outlet NO\textsubscript{x} concentration curves. Their release is much more pronounced and occurs at lower temperatures on the Pt/Ce-containing samples in comparison with the Pt/Zr/Al system.

The NO\textsubscript{x}-TPD of pure γ-Al\textsubscript{2}O\textsubscript{3} and Pt supported on γ-Al\textsubscript{2}O\textsubscript{3}, CeO\textsubscript{2}, and CeO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} systems have been thoroughly discussed in various former reports.36,64,66 In agreement with them, the low-temperature TPD signal at ∼390 K in the desorbed NO\textsubscript{x} species is about 7% from the total amounts of NO\textsubscript{x} desorbed on the sample (Table 2). Furthermore, with the temperature increase, the desorption process occurred by a release of significantly higher amounts of NO\textsubscript{x}, revealing two desorption features in the high-temperature region: a shoulder at ca. 507 K and a peak at ca. 612 K. In addition, on the asymmetric high-temperature tail of the dominant TPD peak, the presence of a shoulder at ∼701 K is visible.

Table 2. Calculated Parameters Obtained via NO\textsubscript{x}-TPD Analysis

<table>
<thead>
<tr>
<th>samples</th>
<th>total integrated areas under NO\textsubscript{x}-related desorption features (arb. units) × 10-3</th>
<th>peak-I %</th>
<th>peak-II %</th>
<th>peak-III %</th>
<th>peak-IV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Ce/Al</td>
<td>4.5</td>
<td>7.9</td>
<td>25.7</td>
<td>39.7</td>
<td>26.7</td>
</tr>
<tr>
<td>Pt/Ce–Zr/Al</td>
<td>3.6</td>
<td>4.8</td>
<td>24.4</td>
<td>19.0</td>
<td>51.8</td>
</tr>
<tr>
<td>Pt/Zr/Al</td>
<td>3.6</td>
<td>7.1</td>
<td>18.4</td>
<td>20.2</td>
<td>54.3</td>
</tr>
</tbody>
</table>

*Obtained by considering the QMS fragmentation patterns of all of the major NO\textsubscript{x} desorption species (i.e., NO\textsubscript{2}, NO, N\textsubscript{2}O, and N\textsubscript{2}O\textsubscript{3}) in the NO\textsubscript{x}-TPD data (see Supporting Information for details). NO\textsubscript{x}-TPD curves obtained experimentally were deconvoluted using a Gaussian curve-fitting method. The obtained area under the fitted peaks was used to compute the different NO\textsubscript{x} adsorption contribution of the components in ternary/binary oxide systems.

The NO\textsubscript{x} desorption feature at ∼507 K, which is suppressed when ceria was partially replaced by ZrO\textsubscript{2} into the Ce–Zr/Al system, can be tentatively assigned to the desorption of the more stable nitrates bound to surface CeO\textsubscript{2} species strongly interacting with the Pt. The desorption feature at ca. 612 K is attributed to the decomposition of the NO\textsubscript{x} species strongly bonded to bulk CeO\textsubscript{2}. The shoulder at ∼701 K is much more pronounced into Pt/Zr-containing systems and is likely due to desorption of more stable NO\textsubscript{x} ad-species on zirconia. The amount of NO\textsubscript{x} desorbed is about 50% from the total NO\textsubscript{x} desorbed from Pt/Ce–Zr/Al and Pt/Zr/Al samples. These results show that the sample is characterized by the presence of at least two different types of NO\textsubscript{x} species adsorbed on ceria and another adsorbed on zirconia with distinctively different thermal stabilities.

Comparing the total integrated areas under the NO\textsubscript{x} desorption peaks in the TPD profiles (Table 1) indicates that slightly less NO\textsubscript{x} was stored on the Pt/Ce–Zr/Al sample compared to the reference binary oxide system having higher CeO\textsubscript{2} content. On the other hand, the Pt/Ce–Zr/Al sample is characterized by NO\textsubscript{x} storage ability identical to that of the Pt/Zr/Al system, indicating its weaker dependence on zirconia loading. Thus, it can be suggested that the NO\textsubscript{x} adsorption ability of the Pt/Ce–Zr/Al catalyst is most likely due to the high promoter metal oxide dispersion achieved in the presence of both ceria and zirconia species on the surface, providing additional adsorption sites that are able to store NO\textsubscript{x}.

Figure 8. FTIR spectra in the ν(N–O) stretching region of reduction of ad-NO\textsubscript{x} species with H\textsubscript{2} (22.5 Torr H\textsubscript{2} equilibrium pressure) on activated Pt/Ce–Zr/Al (panel A), Pt/Ce/Al (panel B), and Pt/Zr/Al (panel C) samples (spectrum a at RT) and evolution of the spectra after each step of increasing the temperature in the range of 298–673 K (spectra b–i). The spectra are background- and NO gas-phase-corrected.

Figure 7A was associated with the thermal decomposition of the weakly NO\textsubscript{x} adsorbed species, formed mostly on the Al3+ adsorption sites.
3.5. Reduction of the Adsorbed NO\textsubscript{x} Species by H\textsubscript{2}: FTIR Studies. The reducibility of the adsorbed NO\textsubscript{x} species was studied by using H\textsubscript{2} as a reducing agent. In these experiments, first, nitrate species were produced on the samples as described above, followed by evacuation at ambient temperature. In the next step, H\textsubscript{2} (22.5 Torr equilibrium pressure) was added to the NO\textsubscript{x}-saturated samples at RT, and the IR spectra were recorded after different temperatures of interaction between 298 and 673 K. The series of IR spectra collected in the experiments performed with the activated Pt/ Ce−Zr/Al sample are displayed in the i(N−O) stretching region [Figure 8A (spectra a−i)]. For comparison, the evolution of the FTIR spectra during the reduction process of the adsorbed NO\textsubscript{x} species on the activated Pt/ Ce/Al and Pt/ Zr/Al samples are presented in Figure 8B,C, respectively.

The introduction of H\textsubscript{2} at RT to the Pt/ Ce−Zr/ Al sample hardly affects the IR spectrum of the adsorbed species (Figure 8A, spectrum a). Increase in the reduction temperature (323 and 373 K) resulted in the attenuation of the intensity of all nitrate-related IR bands (Figure 8, spectra b,c). Particularly, this can be seen in the spectrum acquired at 373 K in the presence of H\textsubscript{2} (spectrum c) where the bands due to NO\textsubscript{x} adsorbed species almost completely vanished. The process of reduction of the adsorbed NO\textsubscript{x} species at 373 K coincides with the appearance of a new set of bands at 1643, 1464, 1400, and 1330 cm-1 and a shoulder at 1687 cm-1. These features can also be distinguished in the spectra obtained at temperatures in the range of 423−673 K (spectra d−i). The band at 1643 cm-1 is attributed to the bending mode (\delta\textsubscript{H−O−H}) of molecularly adsorbed water while the feature at 1464 and the shoulder at ∼1687 cm-1 are assigned to deformation vibrations of NH\textsubscript{4}+-adsorbed species.

Previous studies64,72 showed that water strongly affects the spectra of the surface nitrates and it was also proposed that formation of water during the reduction of the adsorbed NO\textsubscript{x} species with H\textsubscript{2} may induce significant phase transformations of preadsorbed NO\textsubscript{x} into bulk-like nitrate species. The formation of this new type of bulk-like nitrate species in our study is supported by the appearance of characteristic broad band at 1330 cm-1 and the features at 1400 and 1320 cm-1 (Figure 8A).64,72 The intensities of these features initially increase at the beginning of the reduction process (Figure 8A, spectrum c) and then starts to diminish gradually with a further increase in the reduction temperature (spectra d−i).

Comparison of the spectra presented in Figure 8 reveals that the reduction of adsorbed NO\textsubscript{x} species with H\textsubscript{2} over the Pt/ Ce−Zr/Al system (Figure 8A) appears to be much easier as compared to the Pt/ Ce/Al and Pt/ Zr/Al samples (Figure 8B,C). This can readily be seen even at 423 K for Pt/ Ce−Zr/Al (Figure 8A, spectrum d) where the nitrate-related bands almost completely vanish, whereas at the same temperature on Pt/ Ce/Al and Pt/ Zr/Al samples (Figure 8B,C, spectra d), they are still very well visible. The appearance of an intense band at 1643 cm-1 on Pt/ Ce−Zr/Al due to molecularly adsorbed water at much lower temperatures (373 K) also strongly suggests that the NO\textsubscript{x} reduction process is much more facilitated over the Pt/ Ce−Zr/ Al system compared with the other two samples. Overall, comparison of the spectra of the Pt/ Ce/Al and Pt/ Zr/Al samples also showed that the process of reduction of the NO\textsubscript{x} ad-species with H\textsubscript{2} is much more facile on the Pt/ Ce/Al sample compared with the Pt/ Zr/Al system. This also clearly shows the promotional effect of ceria in the NO\textsubscript{x} reduction.

Similar results were also obtained in the studies performed from some of us where the reduction of the stored NO\textsubscript{x} species with H\textsubscript{2} was investigated over ceria-promoted NSR catalysts.15 The positive effect of ceria-promoted surface on the NO\textsubscript{x} reduction has been explained because of the enhancement of the total amount of activated hydrogen on the catalyst surface and lowering of the thermal threshold for hydrogen activation. Direct evidence for this was obtained from the currently presented H\textsubscript{2}-TPR analysis. In addition, the hydrogen activation was observed to occur in concert with ceria reduction and generation of oxygen vacancies.15 It was also found that the effect can be enhanced when ceria and zirconia co-exist into the system.23

4. CONCLUSIONS

The main conclusions of the presented results can be summarized as follows:

(a) The porous and crystalline structure of the synthesized Pt/CeO\textsubscript{2}−ZrO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} catalyst was found to be only slightly affected compared with the reference Pt/CeO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} and Pt/ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} systems. In the mixed Ce−Zr-containing material, ceria exists as a crystalline CeO\textsubscript{2} phase with a fluorite structure while zirconia is presented mostly in a highly disordered amorphous form, and/or a highly dispersed oxide phase with small particulate size. The use of CO as a probe molecule revealed that during the synthesis of the mixed-metal oxide systems, deposited zirconia preferentially interacts with the alumina hydroxyls, while deposited ceria was preferentially located at the Lewis acid sites. When deposited on ZrO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} platinum formed relatively big particles and existed in metallic state even in the nonreduced sample.

(b) Despite the limited extent of Zr4+ ions incorporated into the CeO\textsubscript{2} lattice, the reduction of ceria was promoted and occurred at lower temperatures in the presence of zirconia. As revealed by H\textsubscript{2}-TPR, the presence of Pt may also significantly alter the reduction behavior of ceria leading to lowering the reduction temperature and splitting of the reduction process into two different temperature regions. The low-temperature region was associated with reduction of the Pt oxide phase and Ce4+ ions of the well-dispersed CeO\textsubscript{2} surface species in the vicinity of the Pt sites. In contrast, reduction of segregated CeO\textsubscript{2} domains positioned far from the noble metal sites occurs at higher temperatures.

(c) Nature of the adsorbed NO\textsubscript{x} species was studied upon adsorption of NO and co-adsorption of NO and O\textsubscript{2}. NO adsorption on nonreduced Pt-containing materials was negligible but was enhanced on the reduced samples because of Pt0-promoted NO disproportionation. Thus, the NO adsorption can be described in the reaction where the presence of metallic Pt into the samples could provoke electron transfer which could lead to the formation of nitrosyl complexes (bands at 1778 and 1912 cm-1 assigned to Pt0−NO and Pt0−NO\textsubscript{2}, respectively). On the other hand, this is expected to weaken the N−O bond, leading to a high probability of NO disproportionation catalyzed by metallic Pt to N\textsubscript{2}O formation (band at ∼2250 cm-1). The effect is enhanced when ceria and zirconia co-exist into the system.

NO\textsubscript{x} adsorption in the initial steps of O\textsubscript{2} doses occurs by the formation of nitrites, followed by their conversion to different
type surface nitrates with the increasing O2 pressure. Further information regarding the thermal stability of the NOx-adsorbed species was acquired from the NOx-TPD analysis. These results showed that the Pt/Ce-Zr/Al sample is characterized by the presence of at least two different types of NOx species adsorbed on ceria and another adsorbed on zirconia with distinctively different thermal stabilities. The relative stability of the NOx species adsorbed on the Pt/Ce-Zr/Al system increases in the following order: NOx on Al3+ adsorption sites < NOx species on surface CeO2 species strongly interacting with the Pt < NOx species strongly bonded to bulk CeO2 < NOx-adsorbed species on zirconia.

(d) To elucidate the catalytic functionality of the ceria and zirconia-promoted Pt/Al2O3 catalyst, the reduction of the adsorbed NOx species by using H2 as a reducing agent was studied by in situ FTIR spectroscopy. Despite the higher thermal stability of the NOx-adsorbed species bonded to ceria and zirconia, NOx reduction in the presence of H2 is much more facilitated over the Pt/Ce-Zr/Al catalyst. Thus, it was suggested that the main difference in the functionality could be related to the ability of the catalysts to initiate the NOx reduction process through lowering the temperature of oxygen activation on the catalyst surface.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b03186.

- NOx-TPD: main diffraction peak (111) of CeO2 in the XRD patterns of the Pt samples: Pt/Ce-Zr/Al and Pt/Ce/Al; representative bright-field TEM images of Pt/Ce-Zr/Al, Pt/Ce/Al, and Pt/Zr/Al catalysts; FTIR spectra of 14NO, 15NO, and 14NO + 15NO adsorbed (3.75 Torr NO equilibrium pressure) at RT on reduced Pt/Ce/Al sample; assignment obtained by analyzing the spectra of adsorbed 14NO and 15NO over reduced Pt/Ce/Al sample: band position and isotopic red shift factor; FTIR spectra of NO + O2 coadsorbed (0.5 kPa NO and 0.8 kPa Pa O2) equilibrium pressure) at RT on activated Pt/Ce/Al and Pt/Zr/Al samples; and FTIR spectra of NO + O2 coadsorbed (3.75 Torr NO and 6 Torr O2) equilibrium pressure) at RT on activated Pt/Zr/Al, Pt/Ce/Al, and Pt/Ce-Zr/Al samples and evolution of the spectra after each step of increasing the temperature in the range of 298–673 K under dynamic vacuum (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

*E-mail: ozensoy@fen.bilkent.edu.tr (E.O.).
*E-mail: kih@svr.igic.bas.bg (K.H.).

ORCID

Emrah Ozensoy: 0000-0003-4352-3824
Konstantin Hadjijivanov: 0000-0002-7622-4620

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (project no. DN 19/2). We also thank the Bulgarian Academy of Sciences (BAS) and Technical Research Council of Turkey (TUBITAK) (BAS project code: 32-33-41/25.11.2015 and TUBITAK project code: 215M170). E.O. also acknowledges the scientific collaboration with TARLA project founded by the Ministry of Development of Turkey (project code: DPT2006K-120470). Authors acknowledge SASOL GmbH for providing Puralox alumina support materials.

■ REFERENCES

200 method on the properties of zirconia-ceria materials.

−16 textural, structural, and morphological properties.

−4285. NOx adsorption/desorption over ceria-zirconia catalysts on the Langmuir conditions.

−307. Probing the surface of ceria-zirconia catalysts using NOx adsorption/desorption.

(29) Trovarelli, A. Catalytic properties of ceria and CeO2-containing applications. Heterogeneous Catalysis.

(33) Bergeret, G.; Gallezot, P. Particle Size and Dispersion Measurements. Handbook of Heterogeneous Catalysis Handbook of Heterogeneous Catalysis; Wiley, 2008; pp 439−442.

(35) Levasseur, B.; Ebrahim, A. M.; Bandosz, T. J. Role of Zr4+ Cations in NOx adsorption on Ce0.8Zr0.2O2 mixed oxides at ambient conditions. Langmuir 2011, 27, 9379−9386.

